MIT18_06SCF11_Ses2.8Eigenvalues and Eigenvectors.pdf

MIT18_06SCF11_Ses2.8Eigenvalues and Eigenvectors.pdf

ID:33722484

大小:116.23 KB

页数:4页

时间:2019-02-28

MIT18_06SCF11_Ses2.8Eigenvalues and Eigenvectors.pdf_第1页
MIT18_06SCF11_Ses2.8Eigenvalues and Eigenvectors.pdf_第2页
MIT18_06SCF11_Ses2.8Eigenvalues and Eigenvectors.pdf_第3页
MIT18_06SCF11_Ses2.8Eigenvalues and Eigenvectors.pdf_第4页
资源描述:

《MIT18_06SCF11_Ses2.8Eigenvalues and Eigenvectors.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、EigenvaluesandeigenvectorsThesubjectofeigenvaluesandeigenvectorswilltakeupmostoftherestofthecourse.Wewillagainbeworkingwithsquarematrices.Eigenvaluesarespecialnumbersassociatedwithamatrixandeigenvectorsarespecialvectors.EigenvectorsandeigenvaluesAmatrixAactsonvectorsxlikeafunctiondoes

2、,withinputxandoutputAx.EigenvectorsarevectorsforwhichAxisparalleltox.Inotherwords:Ax=λx.Inthisequation,xisaneigenvectorofAandλisaneigenvalueofA.Eigenvalue0Iftheeigenvalueλequals0thenAx=0x=0.Vectorswitheigenvalue0makeupthenullspaceofA;ifAissingular,thenλ=0isaneigenvalueofA.ExamplesSupp

3、osePisthematrixofaprojectionontoaplane.ForanyxintheplanePx=x,soxisaneigenvectorwitheigenvalue1.AvectorxperpendiculartotheplanehasPx=0,sothisisaneigenvectorwitheigenvalueλ=0.TheeigenvectorsofPspanthewholespace(butthisisnottrueforeverymatrix).����011ThematrixB=hasaneigenvectorx=witheige

4、nvalue1101��1andanothereigenvectorx=witheigenvalue−1.Theseeigenvectors−1spanthespace.TheyareperpendicularbecauseB=BT(aswewillprove).det(A−λI)=0Annbynmatrixwillhaveneigenvalues,andtheirsumwillbethesumofthediagonalentriesofthematrix:a11+a22+···+ann.Thissumisthetraceofthematrix.Foratwoby

5、twomatrix,ifweknowoneeigenvaluewecanusethisfacttofindthesecond.CanwesolveAx=λxfortheeigenvaluesandeigenvectorsofA?Bothλandxareunknown;weneedtobeclevertosolvethisproblem:Ax=λx(A−λI)x=0Inorderforλtobeaneigenvector,A−λImustbesingular.Inotherwords,det(A−λI)=0.Wecansolvethischaracteristiceq

6、uationforλtogetnsolutions.1Ifwe’relucky,thesolutionsaredistinct.Ifnot,wehaveoneormorerepeatedeigenvalues.Oncewe’vefoundaneigenvalueλ,wecanuseeliminationtofindthenullspaceofA−λI.ThevectorsinthatnullspaceareeigenvectorsofAwitheigenvalueλ.Calculatingeigenvaluesandeigenvectors��31LetA=.The

7、n:13����3−λ1��det(A−λI)=�13−λ�=(3−λ)2−1=λ2−6λ+8.Notethatthecoefficient6isthetrace(sumofdiagonalentries)and8isthedeterminantofA.Ingeneral,theeigenvaluesofatwobytwomatrixarethesolutionsto:λ2−trace(A)·λ+detA=0.Justasthetraceisthesumoftheeigenvaluesofamatrix,theproductoftheeigenvaluesofany

8、matri

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签