基于蛋白质网络关键蛋白质识别方法的研究

基于蛋白质网络关键蛋白质识别方法的研究

ID:33706736

大小:2.88 MB

页数:63页

时间:2019-02-28

基于蛋白质网络关键蛋白质识别方法的研究_第1页
基于蛋白质网络关键蛋白质识别方法的研究_第2页
基于蛋白质网络关键蛋白质识别方法的研究_第3页
基于蛋白质网络关键蛋白质识别方法的研究_第4页
基于蛋白质网络关键蛋白质识别方法的研究_第5页
资源描述:

《基于蛋白质网络关键蛋白质识别方法的研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、摘要关键蛋白质是生物体生存和繁殖所必需的蛋白质,在生命活动中扮演重要角色。关键蛋白质的识别对于生命科学的研究具有重要意义,在疾病诊治和药物设计等方面也具有重要的应用价值。在后基因组时代,随着高通量技术的发展,可获得的蛋白质相互作用数据日益丰富,基于蛋白质网络的关键蛋白质识别成为新的研究热点。本文从网络拓扑的角度出发,在分析节点拓扑特征的基础上,深入挖掘了蛋白质网络的特征,设计了有效的关键蛋白质识别方法。主要研究工作包括:针对目前以中心性测度为主的基于拓扑的关键蛋白质识别方法只能反映节点特征而无法表征边的重要程度这一不足,引入边聚集系数的概念,构造了一个融合网络中点和边双重特性的测度参数

2、SoECC,并用于关键蛋白质的识别。在酵母蛋白质相互作用网络上的实验结果表明,SoECC的预测准确率和效率普遍高于六种中心性测度,并且SoECC预测出的关键蛋白质表现出明显的聚集效应,这种现象是边聚集系数涵义的体现,也与先前研究者的结论相吻合。针对现有的关键蛋白质识别方法对生物意义及生物功能的挖掘不够深入这一缺点,引入蛋白质复合物的信息,构造了一个新的测度参数SoID来识别关键蛋白质。实验结果表明,SoID预测的关键蛋白质数量普遍多于六种中心性测度的预测结果,在敏感度、特异性等指标上也具有一定优势,并且SoID能够有效识别低度关键蛋白质。针对目前能够获得的蛋白质相互作用数据中包含大量的

3、假阳性这一事实,提出了一种新的相互作用加权方法,在加权网络中使用六个经典的中心性测度来预测关键蛋白质。实验结果表明,任何一种中心性测度在加权蛋白质网络上预测的准确率和效率都普遍高于在相应的非加权蛋白质网络上的预测结果。基于网络拓扑的关键蛋白质识别方法的准确性在很大程度上受网络可靠性和数据真实性的影响,对网络加权可以提升关键蛋白质的预测性能。本文提出的几个关键蛋白质识别方法,通过引入多种信息,有效地提高了识别准确度,为关键蛋白质的识别研究提供了新的思路。关键词蛋白质网络,关键蛋白质,拓扑,蛋白质复合物ABSTRACTEssentialproteinsarethoseproteinswhi

4、chareindispensabletotheviabilityandreproductionofallorganism.Theyplayanimportantroleincellactivities.Identificationofessentialproteinsissignificantnotonlyfortheresearchoflifescience,butforpracticalpurposes,suchasdiagnosisandtreatmentfordiseasesanddrugdesign.Withthedevelopmentofhigh-throughputtec

5、hnologyinthepost·genomicera,awealthofprotein-proteininteractiondatahavebeenproduced.Consequently,identifyingessentialproteinsbasedonproteininteractionnetworksbecomesahottopic.Thispaperproceedsfromnetworktopology,exploresthecharacteristicsofproteininteractionnetworksonthebasisofanalysisoftopologi

6、calcharacteristicsofnodes,anddesignsefficientmethodsforidentifyingessentialproteins.Themainoriginalworksinclude:Thecurrentmethodsforidentifyingessentialproteinsbasedontopology,suchascentralitymeasures,onlyindicatethefeaturesofnodesinthenetworkbutcarlnotcharacterizetheimportanceofedges.Inviewofth

7、is,weproposeanovelmethodbasedonedgeclusteringcoefficient,namedasSoECC,whichbindscharacteristicsofedgesandnodeseffectively.Theexperimentalresultsonyeastproteininteractionnetworkshowthat,bothaccuracyandefficiencyofSoECCareuniv

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。