机械振动和机械波教案

机械振动和机械波教案

ID:33701665

大小:465.06 KB

页数:22页

时间:2019-02-28

机械振动和机械波教案_第1页
机械振动和机械波教案_第2页
机械振动和机械波教案_第3页
机械振动和机械波教案_第4页
机械振动和机械波教案_第5页
资源描述:

《机械振动和机械波教案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、机械振动教学目标:1.掌握简谐运动的动力学特征和描述简谐运动的物理量;掌握两种典型的简谐运动模型——弹簧振子和单摆。掌握单摆的周期公式;了解受迫振动、共振及常见的应用2.理解简谐运动图象的物理意义并会利用简谐运动图象求振动的振幅、周期及任意时刻的位移。3.会利用振动图象确定振动质点任意时刻的速度、加速度、位移及回复力的方向。教学重点:简谐运动的特点和规律教学难点:谐运动的动力学特征、振动图象教学方法:讲练结合,计算机辅助教学教学过程:一、简谐运动的基本概念1.定义物体在跟偏离平衡位置的位移大小成正比

2、,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。表达式为:F=-kx(1)简谐运动的位移必须是指偏离平衡位置的位移。也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。(2)回复力是一种效果力。是振动物体在沿振动方向上所受的合力。(3)“平衡位置”不等于“平衡状态”。平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)(4)F=-kx是判断一个振动是不是简谐运动的充分

3、必要条件。凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。2.几个重要的物理量间的关系要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度a、速度v这四个矢量的相互关系。(1)由定义知:F∝x,方向相反。(2)由牛顿第二定律知:F∝a,方向相同。(3)由以上两条可知:a∝x,方向相反。(4)v和x、F、a之间的关系最复杂:当v、a同向(即v、F同向,也就是v、x反向)时v一定增大;当v、a反向(即v、F反向,也就是v

4、、x同向)时,v一定减小。3.从总体上描述简谐运动的物理量振动的最大特点是往复性或者说是周期性。因此振动物体在空间的运动有一定的范围,用振幅A来描述;在时间上则用周期T来描述完成一次全振动所须的时间。(1)振幅A是描述振动强弱的物理量。(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的)(2)周期T是描述振动快慢的物理量。(频率f=1/T也是描述振动快慢的物理量)周期由振动系统本身的因素决定,叫固有周期。任何简谐运动都有共同的周期公式:(其中m是振动物体的质量,k是

5、回复力系数,即简谐运动的判定式F=-kx中的比例系数,对于弹簧振子k就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度了)。二、典型的简谐运动1.弹簧振子(1)周期,与振幅无关,只由振子质量和弹簧的劲度决定。(2)可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是。这个结论可以直接使用。(3)在水平方向上振动的弹簧振子的回复力是弹簧的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力。【例1】有一弹簧振子做简谐运动,则()A.加速度最大时,速度最大B.速度最大时,位移最大C.位

6、移最大时,回复力最大D.回复力最大时,加速度最大【例2】试证明竖直方向的弹簧振子的振动是简谐运动.【例3】如图所示,质量为m的小球放在劲度为k的轻弹簧上,使小球上下振动而又始终未脱离弹簧。(1)最大振幅A是多大?(2)在这个振幅下弹簧对小球的最大弹力Fm是多大?【例4】弹簧振子以O点为平衡位置在B、C两点之间做简谐运动.B、C相距20cm.某时刻振子处于B点.经过0.5s,振子首次到达C点.求:(1)振动的周期和频率;(2)振子在5s内通过的路程及位移大小;(3)振子在B点的加速度大小跟它距O点4c

7、m处P点的加速度大小的比值.【例5】一弹簧振子做简谐运动.周期为TA.若t时刻和(t+△t)时刻振子运动速度的大小相等、方向相反,则Δt一定等于T/2的整数倍D.若t时刻和(t+△t)时刻振子运动位移的大小相等、方向相同,则△t一定等于T的整数倍C.若△t=T/2,则在t时刻和(t-△t)时刻弹簧的长度一定相等D.若△t=T,则在t时刻和(t-△t)时刻振子运动的加速度一定相同2.单摆。(1)单摆振动的回复力是重力的切向分力,不能说成是重力和拉力的合力。在平衡位置振子所受回复力是零,但合力是向心力,

8、指向悬点,不为零。(2)当单摆的摆角很小时(小于5°)时,单摆的周期,与摆球质量m、振幅A都无关。其中l为摆长,表示从悬点到摆球质心的距离,要区分摆长和摆线长。(3)小球在光滑圆弧上的往复滚动,和单摆完全等同。只要摆角足够小,这个振动就是简谐运动。这时周期公式中的l应该是圆弧半径R和小球半径r的差。(4)摆钟问题。单摆的一个重要应用就是利用单摆振动的等时性制成摆钟。在计算摆钟类的问题时,利用以下方法比较简单:在一定时间内,摆钟走过的格子数n与频率f成正比(n可以是分钟

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。