Div, grad curl and all that (已读).pdf

Div, grad curl and all that (已读).pdf

ID:33697965

大小:353.93 KB

页数:12页

时间:2019-02-28

Div, grad curl and all that (已读).pdf_第1页
Div, grad curl and all that (已读).pdf_第2页
Div, grad curl and all that (已读).pdf_第3页
Div, grad curl and all that (已读).pdf_第4页
Div, grad curl and all that (已读).pdf_第5页
资源描述:

《Div, grad curl and all that (已读).pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、6Div,gradcurlandallthat6.1Fundamentaltheoremsforgradient,divergence,andcurlFigure1:Fundamentaltheoremofcalculusrelatesdf=dxover[a;b]andf(a);f(b).YouwillrecallthefundamentaltheoremofcalculussaysZbdf(x)dx=f(b)¡f(a);(1)adxinotherwordsit'saconnectionbetweentherateofchangeofthefunctiono

2、vertheinterval[a;b]andthevaluesofthefunctionattheendpoints(boundaries)ofthatinterval.Thereareequivalentfundamentaltheorems"forlineintegrals,areaintegrals,andvolumeintegrals.Invectorcalculuswedealwithdi®erenttypesofchangesofscalarandvector¯elds,e.g.r~Á,r¢~~v,andr£~~v,&eachhasitsown

3、theorem.We'vediscussedlineintegralsbefore,mostlyinthecontextoftheworkdonealongapath,butlet'sremindourselvesofthede¯nition:ZBXnF~(~r)¢d~r=nlim!1F~(~ri)¢d~ri;(2)Ai=1inotherwordsweadduptheareaofallthelittlerectangles"F~(~ri)¢d~riconsistingofthevectorF~atthepoint~ridottedintothepathel

4、ementd~ri,seeFigure.Rememberthepointisthatalthoughwearedoinganintegralina2Dspace,weareconstrainedtomovealongapath,sothereisonlyonerealindependentvariable.1Figure2:Lineintegral.Examplefromtest:Considerthetriangleinthe(x;y)planewithverticesat(-1,0),(1,0),and(0,1).Evaluatetheclosedlin

5、eintegralII=(¡yx^+xy^)¢d~r(3)aroundtheboundaryofthetriangleintheanticlockwisedirection.Sincethevector~rhascomponents(x;y),themeasureisd~r=^xdx+^ydy,so(¡yx^+xy^)¢d~r=¡ydx+xdy.R1Onleg(-1,0)!(1,0)wehavey=0,sointegralis(¡y)dx=0.OntheR¡1R01leg(1,0)!(0,1)wehavey=¡x+1,sointegralis-(¡x+1)d

6、x+(1¡1011y)dy=+=1.Onthepath(0,1)!(-1,0)wehavey=x+1,sointegralisR22R¡¡1(x+1)dx+0(y¡1)dy=1+1=1.Sototallineintegralis2.0122Let'sgobackandlookatthelegfrom(1,0)!(0,1)again.Wecouldhaveparameterized"thislegasx=1¡t,y=t,0

7、gralasZZZ(0;1)11F~¢d~r=(¡tx^+(1¡t)^y)¢(¡x^+^y)dt=(t+1¡t)=1;(4)(1;0)00sameanswerasabove.6.1.1Conservative¯eld.Recallwesaidthattheintegralofanexactdi®erentialwasindependentofthepath.Thisresultcanbeexpressedinourcurrentparticularcontext,lineintegralsofvector¯elds.Supposeyouhaveavector

8、¯eldF~whichcanbeexpresseda

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。