基于神经网络的工序能耗模型的研究

基于神经网络的工序能耗模型的研究

ID:33665280

大小:2.63 MB

页数:73页

时间:2019-02-28

基于神经网络的工序能耗模型的研究_第1页
基于神经网络的工序能耗模型的研究_第2页
基于神经网络的工序能耗模型的研究_第3页
基于神经网络的工序能耗模型的研究_第4页
基于神经网络的工序能耗模型的研究_第5页
资源描述:

《基于神经网络的工序能耗模型的研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AbstractABSTRACTAsdevelopmentofthetechnologyandprogressofthesocial,theenergysavingandtheenvironmentalprotectionbecomemoreimportanttopicnow.Theenergyisimportantsafeguardtothecompany.Theefectiveuseofenergyandthereasonablesupplybecomeoneofimportantwaysrealizin

2、genergyconservation.Thispaperisdividedintotwoparts.Inthefirstpart,asetofmodempowerenergymonitorsystemisestablished.Inthesecondpart,artificialneuralnetworkmodeloftheunitprocessenergyconsumptionbasedonthemonitorsystem.Inthefirstpart,establishmentofthepowerene

3、rgycomputermonitorsystembasedonRS-485busisintroduced.Theinstrumentationscommunicatedatautilizingmulti-agreementonthebus.BetweenthePCandtheintelligentinsttumentationsdatacommunicatebymeansofthebus.OnthePC,theKINGVIEWconfigurationsoftwareforthesystemisutilize

4、d.Threelevelofenergymeasurementmonitormanagementsystemisconstituted.ThissystemhasbeenusedintheJMCenergymeasurementmanagementsystem.Thesystemrealizesmanyfunctions,suchasenergymeasurementcentralizationmanagement,automaticdataacquisition,real-timedatamonitor,c

5、umulativeinquiry,historicalinquiryandprintstatiscalreportandsoon.Thesystemenhanceslevelandintensityofthemeasurementmanagement,bringsgreatconvniencetotheproductionschedulingandmeasurementmanagement,improveslaborproductivityefectivelyandimprovesthelevelscaleo

6、ftheenergymeasurementmanagementandcontributesenergysavingtothecompany.Inthesecondpart,theestablishmentofartificialneuralnetworkmodeloftheunitprocessenergyconsumptionisintroduced.Therearemanyfactorsininfluenceofunitprocessenergyconsumption.Becausetheprincipa

7、lcomponentanalysishaslargeabilityinchoosingmaininfluencefactorsfromrelativemanyfactors,principalcomponentanalysisisutilizedtochoosemajorfactors.Theunitprocesshastime-variable,thenonlinearsystemcharacteristic.RBFnetworkisafeed-forwardnetofgoodmerit,havenatur

8、eoffunctionalapproximation.RBFnetworknotonly11Abstracthasthenatureoflocalapproximationanduniversaloptimize,butalsohasthenatureofstrongabilityinstudy,nonlinear,generalizationabilityandfar-speeding.RBFne

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。