资源描述:
《基于神经网络的工序能耗模型的研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、AbstractABSTRACTAsdevelopmentofthetechnologyandprogressofthesocial,theenergysavingandtheenvironmentalprotectionbecomemoreimportanttopicnow.Theenergyisimportantsafeguardtothecompany.Theefectiveuseofenergyandthereasonablesupplybecomeoneofimportantwaysrealizin
2、genergyconservation.Thispaperisdividedintotwoparts.Inthefirstpart,asetofmodempowerenergymonitorsystemisestablished.Inthesecondpart,artificialneuralnetworkmodeloftheunitprocessenergyconsumptionbasedonthemonitorsystem.Inthefirstpart,establishmentofthepowerene
3、rgycomputermonitorsystembasedonRS-485busisintroduced.Theinstrumentationscommunicatedatautilizingmulti-agreementonthebus.BetweenthePCandtheintelligentinsttumentationsdatacommunicatebymeansofthebus.OnthePC,theKINGVIEWconfigurationsoftwareforthesystemisutilize
4、d.Threelevelofenergymeasurementmonitormanagementsystemisconstituted.ThissystemhasbeenusedintheJMCenergymeasurementmanagementsystem.Thesystemrealizesmanyfunctions,suchasenergymeasurementcentralizationmanagement,automaticdataacquisition,real-timedatamonitor,c
5、umulativeinquiry,historicalinquiryandprintstatiscalreportandsoon.Thesystemenhanceslevelandintensityofthemeasurementmanagement,bringsgreatconvniencetotheproductionschedulingandmeasurementmanagement,improveslaborproductivityefectivelyandimprovesthelevelscaleo
6、ftheenergymeasurementmanagementandcontributesenergysavingtothecompany.Inthesecondpart,theestablishmentofartificialneuralnetworkmodeloftheunitprocessenergyconsumptionisintroduced.Therearemanyfactorsininfluenceofunitprocessenergyconsumption.Becausetheprincipa
7、lcomponentanalysishaslargeabilityinchoosingmaininfluencefactorsfromrelativemanyfactors,principalcomponentanalysisisutilizedtochoosemajorfactors.Theunitprocesshastime-variable,thenonlinearsystemcharacteristic.RBFnetworkisafeed-forwardnetofgoodmerit,havenatur
8、eoffunctionalapproximation.RBFnetworknotonly11Abstracthasthenatureoflocalapproximationanduniversaloptimize,butalsohasthenatureofstrongabilityinstudy,nonlinear,generalizationabilityandfar-speeding.RBFne