欢迎来到天天文库
浏览记录
ID:33472763
大小:756.50 KB
页数:61页
时间:2018-05-25
《《计算机组成原理》第3版ppt电子课件教案复习要点》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、«计算机原理»复习要点1.把本学期上课讲的内容认真复习一遍。2.按分章重点地方再仔细复习一遍。3.把布置做的习题再认真看一下。4.计算机中讲到的概念要清楚。要灵活地使用这些概念。做习题计算时要正确。第一章计算机系统概论1.搞清楚计算机中的一些基本概念:冯.诺曼依结构,指令,程序,内存,外存,CPU,存贮器,控制器,适配器,硬件,软件,操作系统等。2.计算机系统的层次结构示意图:P16图1.6.3.计算机的主要硬件组成结构:P8图1.2各部件的功能。存贮器运算器控制器适配器与输入设备/输出设备系统总线中央处理机(CPU)4.计算机应用:1)科学计算2)自动控制3)测量和测试4
2、)信息处理(商务处理和管理应用)5)教育和卫生6)家用电器7)人工智能5.计算机发展历史:第一台电子数字计算机:1946年美国。从计算机制造用器件角度讲,计算机发展经历五代:第一代:1946年,电子管;第二代:1958年,晶体管;第三代:1965年,中小规模集成电路;第四代:1971年,大规模和超大规模集成电路;第五代:1986年,巨大规模集成电路。计算机系统发展趋势:网络化,智能化,模块化,多媒体技术。6.数制转换(1)102102整数部分取余法。102小数部分取整法。(2)2101011.11B=1×23+0×22+1×21+1×20+1×2-1+1×2-2=1
3、1.75D(3)已知:r进制10进制N=kn-1kn-2…k0.k-1…k-l(r)=kn-1rn-1+kn-1rn-2+…+k0r0+k-1r-1+…+k-lr-l(用10进制的乘法和加法规则)(4)28转换。(5)216转换。第二章运算方法和运算器1.数据格式:1)定点数:小数点固定。设用n+1位计算机字长表示。纯整数:小数点隐含在xn的右边。x0是x数符号位,0
4、x
5、2n-1。纯小数:小数点隐含在x0和x1的中间。x0是x数符号位,0
6、x
7、1-2-n。定点整数和定点小数运算方法基本上差不多。x0x1x2….xn-1xnx0x1x2….xn-1xn2)浮点
8、数:N=mRe,m是尾数,用定点小数表示,它的基为R(一般R=2)。浮点数的精度主要有尾数决定,尾数二进制位愈长,精度愈高。e为浮点数的指数,用定点整数表示。浮点数的表数范围主要有e决定。EsE1E2…EmMsM1M2…Mn阶符阶码数符尾数下面列出IEEE754标准的两种浮点数表示的格式:(1)32位浮点数标准格式:(2)64位浮点数标准格式:(-1)s×1.M×2e给出一个十进制数,用IEEE754标准32位浮点数标准格式代码表示。给出用IEEE754标准32位浮点数标准格式代码,求出表示真值十进制数的表示。2.十进制数串表示1)字符串形式(非压缩的十进制数串形式):一
9、个字节放一个ASCII编码的十进制数字。2)压缩的十进制数串形式:用4位二进制放一个二-+进制BCD码,一个字节放两个十进制BCD码。C=1100表示+,D=1101表示-。例如:1234用压缩的十进制数串形式的BCD码表示:00010010001101004.定点数在计算机中四种代码(原码,补码,反码,移码)的表示:(1)定点小数x=+0.x1x2…xnn+1位的二进制字长代码表示。[x]原=[x]补=[x]反=0.x1x2…xn[x]移=1.x1x2…xnx=0.x1x2…xnn+1位的二进制字长代码表示。[x]原=1.x1x2…xn[x]反=1.x1x2…xn[
10、x]补=1.x1x2…xn+0.0..01mod2[x]移=0.x1x2…xn+0.0..01mod2(2)定点整数X=+x1x2…xnn+1位的二进制字长代码表示。[x]原=[x]补=[x]反=0x1x2…xn[x]移=1x1x2…xnX=x1x2…xnn+1位的二进制字长代码表示。[x]原=1x1x2…xn[x]反=1x1x2…xn[x]补=1x1x2…xn+1mod2n+1[x]移=0x1x2…xn+1mod2n+1(3)举例:x=0.1011(正纯小数)[x]原=[x]补=[x]反=0.1011[x]移=1.1011y=–0.1011(负纯小数)[y]原=1.
11、1011[y]反=1.0100[y]补=1.0101[y]移=0.0101x=1011(正整数)[x]原=[x]补=[x]反=01011[x]移=11011y=–1011(负整数)[y]原=11011[y]反=10100[y]补=10101[y]移=001015.已知:各种代码真值。[x1]原=[x2]补=[x3]反=[x4]移=x0.x1x2…xn若x0=0,x1=x2=x3=0.x1x2…xn;x4=–(0.x1x2…xn+0.0…01)。若x0=1,x1=–0.x1x2…xnx2=–(0.x1x2…xn+0
此文档下载收益归作者所有