资源描述:
《【7A版】2001考研数学一试题及答案解析.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、7A版优质实用文档20GG年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设(为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)设,则div(gradr)=_____________.(3)交换二次积分的积分次序:=_____________.(4)设矩阵满足,其中为单位矩阵,则=_____________.(5)设随机变量的方差是,则根据切比雪夫不等式有估计_____________.二、选择题(本
2、题共5小题,每小题3分,满分15分.)(1)设函数在定义域内可导,的图形如右图所示,则的图形为(2)设在点附近有定义,且,157A版优质实用文档7A版优质实用文档则(A).(B)曲面在处的法向量为{3,1,1}.(C)曲线在处的切向量为{1,0,3}.(D)曲线在处的切向量为{3,0,1}.(3)设,则在=0处可导的充要条件为(A)存在.(B)存在.(C)存在.(D)存在.(4)设则与(A)合同且相似.(B)合同但不相似.(C)不合同但相似.(D)不合同且不相似.(5)将一枚硬币重复掷n次,以G和Y分别表示正面向
3、上和反面向上的次数,则G和Y的相关系数等于(A)-1.(B)0.(C).(D)1.三、(本题满分6分)求.四、(本题满分6分)设函数在点处可微,且,,,.求.157A版优质实用文档7A版优质实用文档五、(本题满分8分)设=将展开成的幂级数,并求级数的和.六、(本题满分7分)计算,其中是平面与柱面的交线,从轴正向看去,为逆时针方向.七、(本题满分7分)设在内具有二阶连续导数且,试证:(1)对于内的任一,存在惟一的,使=+成立;(2).八、(本题满分8分)设有一高度为(为时间)的雪堆在融化过程,其侧面满足方程(设长度
4、单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为0.9),问高度为130(厘米)的雪堆全部融化需多少小时?九、(本题满分6分)设为线性方程组的一个基础解系,,,157A版优质实用文档7A版优质实用文档,其中为实常数.试问满足什么条件时,也为的一个基础解系.十、(本题满分8分)已知3阶矩阵与三维向量,使得向量组线性无关,且满足.(1)记=(),求3阶矩阵,使;(2)计算行列式.十一、(本题满分7分)设某班车起点站上客人数服从参数为()的泊松分布,每位乘客在中途下车的概率为(),且中途下车与
5、否相互独立.以表示在中途下车的人数,求:(1)在发车时有个乘客的条件下,中途有人下车的概率;(2)二维随机变量的概率分布.十二、(本题满分7分)设总体服从正态分布(),从该总体中抽取简单随机样本,,(),其样本均值为,求统计量的数学期望.20GG年考研数学一试题答案与解析一、填空题157A版优质实用文档7A版优质实用文档(1)【分析】由通解的形式可知特征方程的两个根是,从而得知特征方程为.由此,所求微分方程为.(2)【分析】先求gradr.gradr=.再求divgradr==.于是divgradr
6、=.(3)【
7、分析】这个二次积分不是二重积分的累次积分,因为时.由此看出二次积分是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为.由累次积分的内外层积分限可确定积分区域:.见图.现可交换积分次序原式=157A版优质实用文档7A版优质实用文档.(4)【分析】矩阵的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.因为,故,即.按定义知.(5)【分析】根据切比雪夫不等式,于是.二、选择题(1)【分析】当时,单调增,(A),(C)不对;当时,:增——减——增:正——负——正,(B)不对,(
8、D)对.应选(D).(2)【分析】我们逐一分析.关于(A),涉及可微与可偏导的关系.由在(0,0)存在两个偏导数在(0,0)处可微.因此(A)不一定成立.关于(B)只能假设在(0,0)存在偏导数,不保证曲面在存在切平面.若存在时,法向量n=157A版优质实用文档7A版优质实用文档{3,1,-1}与{3,1,1}不共线,因而(B)不成立.关于(C),该曲线的参数方程为它在点处的切向量为.因此,(C)成立.(3)【分析】当时,.关于(A):,由此可知.若在可导(A)成立,反之若(A)成立.如满足(A),但不.关于(D
9、):若在可导,.(D)成立.反之(D)成立在连续,在可导.如满足(D),但在处不连续,因而也不.再看(C):157A版优质实用文档7A版优质实用文档(当它们都时).注意,易求得.因而,若(C)成立.反之若(C)成立(即).因为只要有界,任有(C)成立,如满足(C),但不.因此,只能选(B).(4)【分析】由,知矩阵的特征值是4,0,0,0.又因是实对称矩阵,必能相似对角化