资源描述:
《【5A版】数列复习(公开课精华).ppt》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、数列(复习课)数列通项an等差数列前n项和Sn等比数列定义通项前n项和性质知识结构一、知识回顾仍成等差仍成等比等差数列等比数列定义通项通项推广中项性质求和公式关系式适用所有数列牛刀小试⒈在等差数列{an}中,a2=-2,a5=54,求a8=_____.⒉在等差数列{an}中,若a3+a4+a5+a6+a7=450,则a2+a8的值为_________.⒊在等差数列{an}中,a15=10,a45=90,则a60=__________.⒋在等差数列{an}中,a1+a2=30,a3+a4=120,则a5+a6=_____.110运用性质:an=am+(n-m)d或等差中项运用性
2、质:若n+m=p+q则am+an=ap+aq运用性质:从原数列中取出偶数项组成的新数列公差为2d.(可推广)运用性质:若{an}是公差为d的等差数列{cn}是公差为d′的等差数列,则数列{an+cn}是公差为d+d′的等差数列。180130210⒈在等比数列{an}中,a2=-2,a5=54,a8=.⒉在等比数列{an}中,且an>0,a2a4+2a3a5+a4a6=36,那么a3+a5=_.⒊在等比数列{an}中,a15=10,a45=90,则a60=__________.⒋在等比数列{an}中,a1+a2=30,a3+a4=120,则a5+a6=_____.-145862
3、70480或-270牛刀小试Ⅰ、等差、等比数列的设法及应用1.三个数成等差数列可设为或者,2.三个数成等比数列,则这三个数可设为,也可以设为例1(1).已知三个数成等差数列,其和为15,其平方和为83,求此三个数.析:设这三个数为则∴所求三个数分别为3,5,7解得x=5,d=或7,5,3.±2.二、知识应用根据具体问题的不同特点而选择不同设法。例1(2):互不相等的三个数之积为,这三个数适当排列后可成为等比数列也可排成等差数列,求这三数排成的等差数列.设这三个数为,则即:(1)若的等差中项,则即:与已知三数不等矛盾(2)若的等差中项,则即:三个数为或(3)若的等差中项,则即:
4、三个数为或综上:这三数排成的等差数列为:Ⅱ、运用等差、等比数列的性质例2(1)已知等差数列满足,则()(3)已知在等差数列{an}的前n项中,前四项之和为21,后四项之和为67,前n项之和为286,试求数列的项数n.析:C(2)已知等差数列前项和为30,前项和为100,则前项和为()C考题剖析已知{an}为等差数列,a2+a8=12,,则a5等于()(A)4(B)5(C)6(D)7解:由已知,由等差数列的性质,有a2+a8=2a5,所以,a5=6,选(C)。[点评]本题直接利用等差数列的性质,由等差中项可得,属容易题。例3.等差数列{an}中,a1<0,S9=S12,该数列前
5、多少项的和最小?分析:如果等差数列{an}由负数递增到正数,或者由正数递减到负数,那么前n项和Sn有如下性质:1.当a1<0,d>0时,2.当a1>0,d<0时,思路1:寻求通项∴n取10或11时Sn取最小值即:易知由于Ⅲ、等差数列的最值问题例3.等差数列{an}中,a1<0,S9=S12,该数列前多少项的和最小?分析:等差数列{an}的通项an是关于n的一次式,前项和Sn是关于n的二次式(缺常数项).求等差数列的前n项和Sn的最大最小值可用解决二次函数的最值问题的方法.思路2:从函数的角度来分析数列问题.设等差数列{an}的公差为d,则由题意得:∵a1<0,∴d>0,∵d>
6、0,∴Sn有最小值.又∵n∈N*,∴n=10或n=11时,Sn取最小值即:例3.等差数列{an}中,a1<0,S9=S12,该数列前多少项和最小?分析:数列的图象是一群孤立的点,数列前n项和Sn的图象也是一群孤立的点.此题等差数列前n项和Sn的图象是在抛物线上一群孤立的点.求Sn的最大最小值即要求距离对称轴最近的正整数n.因为S9=S12,又S1=a1<0,所以Sn的图象所在的抛物线的对称轴为直线n=(9+12)÷2=10.5,所以Sn有最小值∴数列{an}的前10项或前11项和最小nSnon=10.5类比:二次函数f(x),若f(9)=f(12),则函数f(x)图象的对称轴
7、为直线x=(9+12)÷2=10.5若f(x+2)=f(2-x),则函数f(x)图象的对称轴为直线x=2思路3:函数图像、数形结合令故开口向上过原点抛物线设等差数列{an}的公差为d,等比数列{bn}的公比为,则由题意得解析:通项特征:由等差数列通项与等比数列通项相乘而得求和方法:错位相减法——错项法例4已知数列{an}是等差数列,数列{bn}是等比数列,又a1=b1(1)求数列{an}及数列{bn}的通项公式;(2)设cn=anbn求数列{cn}的前n项和Sn=1,a2b2=2,a3b3=.Ⅳ、等差、