费马点-利用旋转变换求线段最值t

费马点-利用旋转变换求线段最值t

ID:33311748

大小:353.74 KB

页数:7页

时间:2019-02-24

费马点-利用旋转变换求线段最值t_第1页
费马点-利用旋转变换求线段最值t_第2页
费马点-利用旋转变换求线段最值t_第3页
费马点-利用旋转变换求线段最值t_第4页
费马点-利用旋转变换求线段最值t_第5页
资源描述:

《费马点-利用旋转变换求线段最值t》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.例5、(衢州市)如图,已知点A(-4,8)和点B(2,n)在抛物线上.(1) 求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;(2) 平移抛物线,记平移后点A的对应点为A′,点B的对应点为B′,点C(-2,0)和点D(-4,0)是x轴上的两个定点.① 当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;② 当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.4x22A8-2O-2-4y

2、6BCD-4414年1月石景山期末6.已知点和点在抛物线上.(1)求的值及点的坐标;(2)点在轴上,且满足△是以为直角边的直角三角形,求点的坐标;(3)平移抛物线,记平移后点A的对应点为,点B的对应点为.点M(2,0)在x轴上,当抛物线向右平移到某个位置时,最短,求此时抛物线的函数解析式.练习1、(达州)15、如图6,在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值).2.如图所示,正方形的面积为12,是等边三角形,点在正方形

3、内,在对角线上...有一点,使的和最小,则这个最小值为()A.B.C.3D.3、滨州市中考第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2,-4)、O(0,0)、B(2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.4、山西省中考第26题如图1,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上的一个动点,过P作直线l//AC交抛

4、物线于点Q.试探究:随着点P的运动,在抛物线上是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;(3)请在直线AC上找一点M,使△BDM的周长最小,求出点M的坐标.图1满分解答5.(年山东聊城)已知△ABC中,边BC的长与BC边上的高的和为20.(1)写出△ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;(2)当BC多长时,△ABC的面积最大?最大面积是多少?(3)当△ABC面积最大时,是否存在其周长最小的情形?如果存在,请说出理由,并求出其

5、最小周长;如果不存在,请给予说明.6.(江苏苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一动点,则PA+PC的最小值为【  】A.B.C.D.27....(已知点D与点A(8,0),B(0,6),C(a,-a)是一平行四边形的四个顶点,则CD长的最小值为.8.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是  .9.如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(

6、2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.一、费马点、利用旋转变换求线段和最值费马点编辑本段费马点定义  在一个多边形中,到每个顶点距离之和最小的点叫做这个多边形的费马点。  在平面三角形中:  (1).三内角皆

7、小于120°的三角形,分别以AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点.    (2).若三角形有一内角大于或等于120度,则此钝角的顶点就是所求.  (3)当△ABC为等边三角形时,此时外心与费马点重合  (1)等边三角形中BP=PC=PA,BP、PC、PA分别为三角形三边上的高和中线、三角上的角分线。是内切圆和外切圆的中心。△BPC≌△CPA≌△PBA。  (2)当BC=BA但CA≠AB时,BP为三角形CA上的高和中线、三角上的

8、角分线。编辑本段证明  (1)费马点对边的张角为120度。  △CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1,  △CC1B和△AA1B是全等三角形,得到∠PCB

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。