届高三数学第一学期第一次周练试卷328.doc

届高三数学第一学期第一次周练试卷328.doc

ID:33220811

大小:361.50 KB

页数:7页

时间:2019-02-22

届高三数学第一学期第一次周练试卷328.doc_第1页
届高三数学第一学期第一次周练试卷328.doc_第2页
届高三数学第一学期第一次周练试卷328.doc_第3页
届高三数学第一学期第一次周练试卷328.doc_第4页
届高三数学第一学期第一次周练试卷328.doc_第5页
资源描述:

《届高三数学第一学期第一次周练试卷328.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、09届高三数学第一学期第一次周练试卷试卷命题人、责任人:盛兆兵分值:160分考试时间:120分钟一、填空题:1.已知全集U={1,2,3,4,5,6},集合A={l,3,5},B={l,2},则(СUA)∩B=▲.2.若复数(a+i)(1—2i)(i是虚数单位)是纯虚数,则实数a=▲.3.已知a为第二象限角,且sina=,则tana=▲.4.若椭圆的一个顶点与两个焦点构成直角三角形,则该椭圆的离心率是▲.5.设、是不同的直线,、、是不同的平面,有以下四个命题:①;②;③;④,其中假命题是____▲___(填序号).6.如图

2、是一个空间几何体的三视图,其主视图、左视图均为正三角形,俯视图为圆,则该几何体的侧面积为▲.7.某算法的伪代码如图所示,如果输出的y值是4,那么输入的x的所有可能的值是▲.ReadxIfx<0Theny←x-2Elsey←x2-3xEndIfPrinty(第7题)主视图左视图俯视图22(第6题目题)8.已知函数)y=f(x)是奇函数,当x<0时,f(x)=x2+ax(a∈R),且f(2)=6,则a=▲9.用计算机随机产生的有序二元数组满对每个二元数组(x,y),用计算机计算x2+y2的值,记“(x,y)满足x2+y2<l”

3、为事件A,则事件A发生的概率为▲10.已知p:一4<x-a<4,q:(x一2)(3一x)>0,若¬p是¬q的充分条件,则实数a的取值范围是▲.11.已知函数f(x),g(x)满足,f(5)=5,f﹐(5)=3,g(5)=4,g﹐(5)=1,则函数y=的图象在x=5处的切线方程为▲.12.若实数a,b满足ab一4a一b+1=0(a>1),则(a+1)(b+2)的最小值为▲.13.若存在a∈[1,3],使得不等式ax2+(a-2)x-2>0成立,则实数x的取值范围是▲.14.对于△ABC,有如下命题:①若sin2A=sin2B

4、,则△ABC为等腰三角形;②若sinA=cosB,则△ABC为直角三角形;③若sin2A+sin2B+cos2C<1,则△ABC为钝角三角形;④若tanA+tanB+tanC>0,则△ABC为锐角三角形.其中正确命题的序号是▲.(把你认为所有正确的都填上)2008-2009学年度第一学期第一次周练试卷高三数学试卷命题人、责任人:盛兆兵分值:160分考试时间:120分钟二、解答题:本大题共6小题,共计90分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本题满分14分)已知向量(1)当时,求的值

5、;(2)求在上的值域.16.(本题满分14分)、ABCDEFM如图,菱形ABCD所在平面与矩形ACEF所在平面互相垂直,已知BD=2AF,且点M是线段EF的中点.(1)求证:AM∥平面BDE;(6分)(2)求证:平面DEF⊥平面BEF.(8分)17.(本题满分15分)在△ABC中,角A,B,C的对边依次为a,b,c,且A,B,C依次成等差数列.(1)若·=-,且b=,求a+c的值;(8分)(2)若A<C,求2sin2A+sin2C的取值范围.(6分)18.(本题满分15分)如图,在平面直角坐标系xOy中,平行于x轴且过点A

6、(3,2)的入射光线l1被直线l:y=x反射.反射光线l2交y轴于B点,圆C过点A且与l1,l2都相切.(1)求l2所在直线的方程和圆C的方程;(10分)(2)设P,Q分别是直线l和圆C上的动点,求PB+PQ的最小值及此时点P的坐标.(6分)xyOABl2l1l19.(本题满分16分)设函数.(1)当k=2时,求函数f(x)的增区间;(2)当k<0时,求函数g(x)=在区间(0,2]上的最小值.20.(本题满分16分)一个三角形数表按如下方式构成:第一行依次写上n(n≥4)个数,在上一行的每相邻两数的中间正下方写上这两数之

7、和,得到下一行,依此类推.记数表中第i行的第j个数为f(i,j).f(1,1)f(1,2)…f(1,n-1)f(1,n)f(2,1)f(2,2)…f(2,n-1)f(3,1)…f(3,n-2)…f(n,1)(1)若数表中第i(1≤i≤n-3)行的数依次成等差数列,求证:第i+1行的数也依次成等差数列;(4分)(2)已知f(1,j)=4j,求f(i,1)关于i的表达式;(6分)(3)在(2)的条件下,若f(i,1)=(i+1)(ai-1),bi=,试求一个函数g(x),使得Sn=b1g(1)+b2g(2)+…+bng(n)<

8、,且对于任意的m∈(,),均存在实数l,使得当n>l时,都有Sn>m.(6分)高三数学试卷参考答案一、填空题:本大题共14小题,每小题5分,共70分。1.;2.;3.;4.;5.②④;6.;7.;8.5;9.; 10.;11.;12.27;13.;14.③④二、解答题:本大题共6小题,共90分15.(1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。