欢迎来到天天文库
浏览记录
ID:33154081
大小:193.50 KB
页数:4页
时间:2019-02-21
《lectures in numerical analysis:在数值分析的讲座》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、alwahip2011LecturesinNumericalAnalysisMethodsBushraH.AliwiDepartmentofMathematicsBABYLONUNIVERSITYbushra_aliwi@yahoo.comCourseforyear20113alwahip2011SolutionofOrdinaryDifferentialEquations:Someequationshasananalyticalsolution,whileotherhasnotsuch;Therearetwotypesofconditionsfortheordinarydifferentia
2、lequationswhichare;·InitialValueProblem:Conditionsarespecifiedatonlyonevalueoftheindependentvariable·Analyticallycansolve;withform;whereand·Bothinitialconditionshavebeenspecifiedat.·Anordinarydifferentialequationoforderrequiredconditionstobespecified.·BoundaryValueProblem:Conditionsarespecifiedattwo
3、valuesofindependentvariable,suchform;where,Orwhere,,,andMethodsofSolution:1.DirectmethodusingTaylarSeries.2.Onestepmethod(selfstartingmethod):-solutioniscarriedfromto.3.Multistepmethod;requiredinformationfor.OneStepMethod(SelfStartingMethod):-I.EulerMethod;Considerthe1storderinitialvalueproblem;,rep
4、lacingbyforwarddifference;wherethen;,orcanwrittenas;wecanuseonlytwotermsfromTaylerSeriesII.ModifiedEulerMethod;Theaccuracyofmethod(I)canbeimplementedifbetterapproximationisusedforthederivative;·Ineachstepwefirstcalculate(byEulerMethod);·Andthenfindnewvalueas;3alwahip2011,orformedas;Thismethodisalsok
5、nownas"Predictor_CorrectionMethod",becauseineachstepwefirstcalculate(byEulerMethod)andthencorrectit.SameexpressioncanobtainedbyusingTaylerSeriesif2ndderivativeisapproximatedbyforwarddifferences;whereso;I.Runge_KuttaMethod;The4thorderformulagivenas;Where;EulerandModifiedEulerareinreality1stand2ndorde
6、rRunge_KuttaMethod.ThemethodrequiresfourevaluationofftogetmoreaccurateresultsandthestepsizeshouldbesufficientlysmallExample:Solvethedifferentialequation;,,by;(1)EulerMethod(2)ModifiedEulerMethod(3)Ruge_KuttaMethod,alsofindonusingSolution:(1)EulerMethod;(2)ModifiedEulerMethod;(3)Ruge_KuttaMethod;3alw
7、ahip2011Sothevalueofthroughthelawcalculatedas;Thenthetableofcalculatingforinclosedintervalthroughthisthreemethodsas;byEulerbyModifiedEulerbyRunge_KuttaExactvaluefor011110.11.21.2211.22211.22210.21.442
此文档下载收益归作者所有