SMM Self Dual Partial Differential Systems And Their Variational Principles (2009) Ghoussoub

SMM Self Dual Partial Differential Systems And Their Variational Principles (2009) Ghoussoub

ID:33114736

大小:3.13 MB

页数:353页

时间:2019-02-20

SMM Self Dual Partial Differential Systems And Their Variational Principles (2009) Ghoussoub_第1页
SMM Self Dual Partial Differential Systems And Their Variational Principles (2009) Ghoussoub_第2页
SMM Self Dual Partial Differential Systems And Their Variational Principles (2009) Ghoussoub_第3页
SMM Self Dual Partial Differential Systems And Their Variational Principles (2009) Ghoussoub_第4页
SMM Self Dual Partial Differential Systems And Their Variational Principles (2009) Ghoussoub_第5页
资源描述:

《SMM Self Dual Partial Differential Systems And Their Variational Principles (2009) Ghoussoub》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Self-dualPartialDifferentialSystemsandTheirVariationalPrinciplesNassifGhoussoubSelf-dualPartialDifferentialSystemsandTheirVariationalPrinciples123NassifGhoussoubUniversityofBritishColumbiaDepartmentofMathematicsVancouverBCV6T1Z2Canadanassif@math.ubc.caISSN:1439-7382ISBN:978-0-387-84896-

2、9e-ISBN:978-0-387-84897-6DOI:10.1007/978-0-387-84897-6LibraryofCongressControlNumber:2008938377MathematicsSubjectClassification(2000):46-xx,35-xxcSpringerScience+BusinessMedia,LLC2009Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewrittenpermissionofthepubli

3、sher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,NY10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnec-tionwithanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhere

4、afterdevelopedisforbidden.Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyarenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubjecttoproprietaryrights.Printedonacid-freepaperspringer.comToMireille.PrefaceHowtosolvepar

5、tialdifferentialsystemsbycompletingthesquare.Thiscouldwellhavebeenthetitleofthismonographasitgrewintoaprojecttodevelopasys-tematicapproachforassociatingsuitablenonnegativeenergyfunctionalstoalargeclassofpartialdifferentialequations(PDEs)andevolutionarysystems.Theminimaofthesefunctionals

6、aretobethesolutionsweseek,notbecausetheyarecriticalpoints(i.e.,fromthecorrespondingEuler-Lagrangeequations)butfromalsobe-ingzerosofthesefunctionals.TheapproachcanbetracedbacktoBogomolnyistrickofcompletingsquaresinthebasicequationsofquantumfieldtheory(e.g.,Yang-Mills,Seiberg-Witten,Ginzbu

7、rg-Landau,etc.,),whichallowsforthederiva-tionoftheso-calledself(orantiself)dualversionoftheseequations.Inreality,theself-dualLagrangiansweconsiderherewereinspiredbyavariationalap-proachproposedover30yearsagobyBrezisandEkelandfortheheatequation´andothergradientflowsofconvexenergi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。