欢迎来到天天文库
浏览记录
ID:33009651
大小:2.43 MB
页数:130页
时间:2019-02-19
《基于svm的智能天线算法分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、重庆邮电大学硕士论文AbstractSmartantennatechnologyisoneofkeytechnologiesinTD—SCDMAcommunicationsystemandtheresearchfocusincommunicationstechnologycurrently.SmartantennacansuppressinterferencesignalsbybeamformingandthustoimprovetheoutputSINRandcommunicationsystemcapacity.Therefore,Researchi
2、ngonthesmartantennaalgorithmissignificantandhasimportantpracticalvalue.SupportVectorMachine(SVM)isthelatestmachinelearningresearch,itonlytakesasmallamountofsampletobetestedonthesamedistributionofthesampleandhasgoodgeneralizationability,butalsodealwithhighdimensional,nonlineardata
3、andglobalconvergenceadvantages.Supportvectormachineshavebeenwidelyappliedtovariousareaofresearch,hasbecomeanewmethodinwirelesscommunicationsignalprocessing.Inthispaper,supportvectormachinesasasignalprocessingtoolapplytoresearchthesmartantennaalgorithm.Themainworkandinnovationofth
4、ispaperincludethat:Firstly,thepapergivesageneraloverviewofthebasicprinciplesofsmartantennaandclassicalalgorithmsofbeamformingandDOAestimation.VCdimensionandgeneralizationoftheVCboundary,lossfunctioninstructuralriskandsupportvectormachinesareincluded.Throughcomputersimulation,supe
5、riorcharacteristicsofclassificationinsupportvectormachineandfittingperformanceinsupportvectormachineregressionintwo-dimensionaldataarebeingshown.Secondly,itextendedsupportvectormachinestothecomplexplaneSOthatcanhandlethecomplexsignalfortheapplicationofsupportvectormachineinbeamfo
6、rmingandDOAestimationworkswellthecushion.Theoptimumbeamformerweightstranslateintosolvingapproximatelinearclassificationproblemsdealingwithsupportvectormachine.EstablishedbeamformerbytheLSVMandNSVMbasedonsupportvectormachines.Bysimulationanalysis,theresultsshowthat,Comparedwiththe
7、traditionalalgorithm,LSVMandNSVMusedinbeamformingalgorithmshasfasterconvergence,higherofoutputSINR,especiallyinthecaseofoverload.TheNSVMshowedbettershapingthantheLSVM,butslightlyhighercomplexity.Thirdly,solvingcoefficientsoftheARmodelbyusingtheSVMandgetthesignalspectrumofthedirec
8、tionofthemodel,adjustingtheparameterscan
此文档下载收益归作者所有