一种时延设计方法与dsp实现

一种时延设计方法与dsp实现

ID:32871250

大小:630.00 KB

页数:11页

时间:2019-02-17

一种时延设计方法与dsp实现_第1页
一种时延设计方法与dsp实现_第2页
一种时延设计方法与dsp实现_第3页
一种时延设计方法与dsp实现_第4页
一种时延设计方法与dsp实现_第5页
资源描述:

《一种时延设计方法与dsp实现》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、一种时延设计方法与DSP实现0引言   短波通信是利用地波或低电离层进行几十千米到几百千米的中、近距离通信,利用电离层反射进行数千乃至上万千米的远距离通信。受电离层中存在瑞利衰落、多径效应、多普勒频移等复杂时变因素的影响,短波通信设备在测试和定装工作耗费较大。为了测试各种短波无线通信系统的性能,通常有两种方法,一种是实验测试,另一种是信道模拟。在实验测试中,为了测试短波通信设备的性能,往往需要在实际通信环境中进行大量的、远距离的场外实验和长时间的测试,实现起来非常困难;信道模拟方法则是通过对信道特性进行理论分析,建立信道模型,在实验室环境下进行与实际信道类似的模拟,它可以很容

2、易地制造各种典型信道特性环境和电磁环境,能够模拟的地域度非常广阔,不受气候条件限制,可以随时进行多次重复实验,而且测试费用少,可以缩短通信设备的研制周期。在各种典型短波信道模型中,Watterson模型由于大多数情况下能够较好地反映短波信道的特性,且复杂度低,而被CCIR推荐并广泛使用。   在研究短波信道中有一个重要问题,即是多径的传播问题。多径传播主要带来两个问题:衰落和延时。多径延时是指多径中最大的传输延时与最小的传输延时之差。多径时延在短波线路上,最严重时时延可达到毫秒级。短波信道模拟器研究中,由于要求的延时尺寸比较大,而且延时的精度要尽可能的高,再加上实时性的原因,

3、数据量非常大。为了后续的DSP的算法处理和前面A/D的数位和精度要求,可以选用大容量存储器作大尺度的延时处理,并选用DSP作插值算法做高精度的小尺寸的延时算法处理。本文重点对高精度小尺寸延时算法进行研究,提出一种基于内插技术的实现方法。1内插抽取器实现结构   整数倍内插就是指在两个原始抽样点之间插入I-1个零值。原始序列x(n)内插后的序列和频谱分别为:          由式(2)可见,内插后信号频谱为原始序列谱经I倍压缩后得到的谱。在频谱图中不仅含有X(ejω)的基带分量,而且还含有其频率大于π/I的高频成分(称其为X(ejω)的高频镜像)。为了从XI(ejω)中恢复原

4、始谱,则必须对内插后的信号进行低通滤波(滤波带宽为π/I),经过内插大大提高了信号的时域分辨率。整数倍抽取是指把原始采样序列x(n)每隔D-1个数据取一个,以形成一个新序列xD(m),即:   式中:D为抽取倍数,是正整数。xD(n)的离散傅里叶变换为:      从式(4)可以看出,抽取序列的频谱XD(ejω)为抽取前原始序列频谱X(ejω)经频移和D倍展宽后的D个频谱的叠加和。如果x(n)序列的采样率为fs,则其无模糊带宽为fs/2。当以D倍抽取率对x(n)进行抽取后,得到的抽取序列xD(m)的取样率为fs/D,其无模糊带宽为fs/(2D);当x(n)含有大于fs/(2D

5、)的频率分量时,xD(m)就必然产生频谱混叠,导致从xD(m)中无法恢复x(n)中小于fs(2D)的频率分量信号。为了避免抽取带来的频谱混叠,需要用一数字滤波器(滤波器带宽为π/D)对X(ejω)进行滤波,使X(ejω)中只含有小于π/D的频率分量,再进行D倍抽取,则抽取后的频谱就不会发生混叠。可以说XD(ejω)能准确地表示X(ejω)中小于π/D的频率分量信号,所以这时对XD(ejω)进行处理等同于对X(ejω)的处理,但前者的数据流速率只有后者的1/D,大大降低了对后处理速度的要求。前面介绍的抽取和内插的结构对运算速度的要求是相当高的,这主要表现在抽取滤波器模型中的低通

6、滤波器位于抽取算子之前,也就是说低通滤波器是在降速之前实现的;而对于内插器模型,其低通滤波器位于内插算子之后,也就是说内插器低通滤波器是在提速之后进行的。总之,无论是抽取器还是内插器,其抗混叠数字滤波均在高取样率条件下进行,这大大提高了对运算速度的要求,对实时处理是极其不利的。下面将讨论有利于实时处理的抽取器、内插器的多相滤波结构。   设数字滤波器的冲击响应为h(n),它的z变换定义为:式中,N为滤波器长度。如果将冲激响应h(n)按下列的排列分成D个组,如N不为D的整数倍,则将h(n)后补零,使得滤波器长度N为D的整数倍,即N/D=Q,Q为整数,则: D-1。式(5)即为数

7、字滤波器H(z)的多相滤波结构。针对本文的应用,此处给出一个I倍内插器多相滤波结构的实现框图,如图1所示。其中,Rk(z')=E(I-1-k)(z')。   由图1可见,此时的数字滤波器Rk(z)位于内插器之前,即滤波是在数据流提速之前进行的,这就大大降低了对处理器的要求,提高了实时处理能力。此外,多相滤波器结构的另一个好处是每一分支滤波器的系数由原来的N个减少到N/I个,可以减小滤波运算的累积误差,有利于提高计算精度,降低对处理器字长的要求。图2是多相结构内插滤波器的开关结构形式。它可以更清楚地说明多

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。