欢迎来到天天文库
浏览记录
ID:32672779
大小:360.00 KB
页数:15页
时间:2019-02-14
《2015年浙江省高考数学试卷文科答案解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、.2015年浙江省高考数学试卷(文科)参考答案与试题解析 一、选择题(本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(2015•浙江)已知集合P={x
2、x2﹣2x≥3},Q={x
3、2<x<4},则P∩Q=( ) A.[3,4)B.(2,3]C.(﹣1,2)D.(﹣1,3]考点:交集及其运算.菁优网版权所有专题:集合.分析:求出集合P,然后求解交集即可.解答:解:集合P={x
4、x2﹣2x≥3}={x
5、x≤﹣1或x≥3},Q={x
6、2<x<4},则P∩Q={x
7、3≤x<4}=[3,4)
8、.故选:A.点评:本题考查二次不等式的解法,集合的交集的求法,考查计算能力. 2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( ) A.8cm3B.12cm3C.D.考点:由三视图求面积、体积.菁优网版权所有专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积
9、的求法,考查计算能力... 3.(5分)(2015•浙江)设a,b是实数,则“a+b>0”是“ab>0”的( ) A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.菁优网版权所有专题:简易逻辑.分析:利用特例集合充要条件的判断方法,判断正确选项即可.解答:解:a,b是实数,如果a=﹣1,b=2则“a+b>0”,则“ab>0”不成立.如果a=﹣1,b=﹣2,ab>0,但是a+b>0不成立,所以设a,b是实数,则“a+b>0”是“ab>0”的既不充分也不必要条件.故选:D
10、.点评:本题考查充要条件的判断与应用,基本知识的考查. 4.(5分)(2015•浙江)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,( ) A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m考点:空间中直线与平面之间的位置关系.菁优网版权所有专题:综合题;空间位置关系与距离.分析:A根据线面垂直的判定定理得出A正确;B根据面面垂直的性质判断B错误;C根据面面平行的判断定理得出C错误;D根据面面平行的性质判断D错误.解答:解:对于A,∵l⊥β,且l⊂α,根据线面垂直的判定定理,得
11、α⊥β,∴A正确;对于B,当α⊥β,l⊂α,m⊂β时,l与m可能平行,也可能垂直,∴B错误;对于C,当l∥β,且l⊂α时,α与β可能平行,也可能相交,∴C错误;对于D,当α∥β,且l⊂α,m⊂β时,l与m可能平行,也可能异面,∴D错误.故选:A.点评:本题考查了空间中的平行与垂直关系的应用问题,也考查了数学符号语言的应用问题,是基础题目. 5.(5分)(2015•浙江)函数f(x)=(x﹣)cosx(﹣π≤x≤π且x≠0)的图象可能为( ) A.B.C.D.考点:函数的图象.菁优网版权所有..专题:函数的性质及应用.分析:由条件可得函数
12、f(x)为奇函数,故它的图象关于原点对称;再根据在(0,1)上,f(x)<0,结合所给的选项,得出结论.解答:解:对于函数f(x)=(x﹣)cosx(﹣π≤x≤π且x≠0),由于它的定义域关于原点对称,且满足f(﹣x)=(﹣x)cosx=﹣f(x),故函数f(x)为奇函数,故它的图象关于原点对称.故排除A、B.再根据在(0,1)上,>x,cosx>0,f(x)=(x﹣)cosx<0,故排除C,故选:D.点评:本题主要考查函数的奇偶性的判断,奇函数的图象特征,函数的定义域和值域,属于中档题. 6.(5分)(2015•浙江)有三个房间需要粉刷
13、,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,且x<y<z,三种颜色涂料的粉刷费用(单位:元/m2)分别为a,b,c,且a<b<c.在不同的方案中,最低的总费用(单位:元)是( ) A.ax+by+czB.az+by+cxC.ay+bz+cxD.ay+bx+cz考点:函数的最值及其几何意义.菁优网版权所有专题:函数的性质及应用.分析:作差法逐个选项比较大小可得.解答:解:∵x<y<z且a<b<c,∴ax+by+cz﹣(az+by+cx)=a(x﹣z)+c(z﹣x)=(
14、x﹣z)(a﹣c)>0,∴ax+by+cz>az+by+cx;同理ay+bz+cx﹣(ay+bx+cz)=b(z﹣x)+c(x﹣z)=(z﹣x)(b﹣c)<0,∴ay+bz+cx<ay+bx+
此文档下载收益归作者所有