骨骼图像增强实验报告

骨骼图像增强实验报告

ID:32579225

大小:368.41 KB

页数:4页

时间:2019-02-12

骨骼图像增强实验报告_第1页
骨骼图像增强实验报告_第2页
骨骼图像增强实验报告_第3页
骨骼图像增强实验报告_第4页
资源描述:

《骨骼图像增强实验报告》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、骨骼图像增强实验报告——数字图像处理第一次作业实验总体思路:原图像是人体骨骼核扫描图像,我们的目的是通过图像锐化突出骨骼的更多细节来增强图像。由于图像灰度的动态范围很窄并且有很高的噪声内容,所以很难对其进行增强。对此我们采取的策略是,首先用拉普拉斯法突出图像中的小细节,然后用梯度法突出其边。平滑过的梯度图像将用于掩蔽拉普拉斯图像。最后,我们将试图试用灰度变换来增强图像的灰度动态范围。实验处理具体步骤:(图像可拉伸放大)1、此为图2,使用模板为[-1,-1,-1;-1,8,-1;-1,-1,-1]的滤波器对原图像进行拉普拉斯操作

2、,为了便于显示,对图像进行了标定,这一步先对图像进行初步的锐化滤波。2、此为图3,由于使用的模板如上,让常数c=1,简单的将原图和图2相加就可以得到一幅经过锐化过的图像。(而这个时候看到图2的噪声水平,将图1和图2相加之后也必然会有很多的噪声。拉普拉斯操作作为一种二阶微分算子,能很好的增强细节,但也产生更多的噪声。而降低噪声的一种方法就是使用中值滤波器,但属于非线性滤波器的中值滤波器有可能改变图像的性质,所以不可取。所以采取另一种方法,使用原图像梯度操作的平滑形式所形成的一个模板。)1、此为图4,对原图像试用Sobel梯度操作

3、,分量gx为[-1,-2,-1;0,0,0;1,2,1],而分量gy为[-1,0,1;-2,0,2;-1,0,1]的模板。(梯度变换在灰度斜坡或台阶的平均相应要比拉普拉斯操作的更强烈,而对噪声和小细节的响应要比拉普拉斯操作的相应弱,而且可以通过均值滤波器对其进行平滑处理可以进一步降低,此时看图像中的边缘要比拉普拉斯图像(即图3)中的边缘要突出许多)2、此为图5,使用大小为5*5的一个均值滤波器得到平滑后的Sobel梯度图像。(图4,5要比图2亮表明具有重要边缘内容的梯度图像的值一般要比拉普拉斯图像的值高)3、此为图6,将拉普拉

4、斯图像(即图3)与平滑后的梯度图像(即图5)进行点乘。(此时看到强边缘的优势和可见噪声的相对减少,用平滑后的梯度图像来掩蔽拉普拉斯图像的目的达到了)4、此为图7,将乘积图像(即图6)与原图像相加就产生一幅需要的锐化图像。(与原图像相比,该图像中大部分细节的清晰度的增加都很明显,所以我们才需要综合多种的方法对图像进行处理,单独使用一种方法根本不可能达到这么好的效果,只需要看相对应的图像进行对比即可知道)5、此为图8,我们希望扩展灰度范围,对图7进行幂率变换处理,r=0.5,c=1,然后即可对图像进行幂率变换(此时需要增大锐化后图

5、像的动态范围,即使有很多种这样效果的灰度变换函数,但是用幂率变换处理更好,直方图均衡和规定化的效果都不太好)(此时人体的轮廓的清晰度虽然还是不高,因为扩大的灰度动态范围的同时也增大了噪声,但是相比原图还是有相当大幅度的提高的,看下图原图与最终图像对比)实验心得与收获:在本次的图像处理编程中,我首次对图像处理的众多方法有了一个感性的理解,图像处理并不是简简单单的应用几个函数即可获得理想的效果,还需要分析得出要得到相应的效果就需要不同的方法,使是知道了对应的图像处理方法也是不足的,在图像处理的编程方法上也必须要熟悉,这一次的例子中

6、因为总体上的方法都已经给出了,因此大部分的工作量就落在了如何选择对应的matlab函数了,所以这一次收获较大的就是在图像处理函数的原型跟使用细节的认识上,还有在例子的理解过程中,也将之前所学的图像处理方法复习熟悉了一遍,在这一个阶段的学习上收获到的帮助很大。而单从思路来看,这一次的分析先从图像边缘着手,容易知道应该采用锐化的技术,并且还结合了拉普拉斯锐化方法和Sobel梯度操作锐化方法,将拉普拉斯的小细节突出优点和Sobel梯度操作的边缘突出优点结合到一起,同时也避免了单一方法中拉普拉斯的噪声较大和Sobel梯度操作的细节突出

7、的不足,这里充分体现出了将多种方法结合起来的优势,然后在以后对Sobel梯度操作进行均值滤波,并用它来作为模板,与拉普拉斯图像进行点乘结合,就充分结合了两者的优点了,最后对图像的灰度范围进行扩展,可以想到很多的扩展灰度的灰度处理方法,但是通过分析和试验,在这里始终还是幂率变换的效果最好,所以应用幂率变换,按照增大锐化灰度图像动态范围的要求,取定适当的参数,即完成图像的最终处理,但是即使这样,图像的效果还是不是在最理想的状态下,而对应不同领域的人,图像的处理方法也不一样,要获得的要求也不一样,所以方法一定要权衡。为了达到那些用一

8、种方法无法实现的图像效果,可以把多种方法结合起来。得到期望结果所使用的方法取决于应用。在这个例子中,所示图像类型的最终用户可能是放射性学者。但也存在超出我们讨论范围的多数原因,如物理学家就不依赖于增强的结果来达到诊断目的。然而,如果将突出一些细节作为进一步分析一幅原图像或一系

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。