欢迎来到天天文库
浏览记录
ID:32455834
大小:3.33 MB
页数:177页
时间:2019-02-05
《【5A版】数据挖掘.ppt》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、工业控制技术研究所自动化前沿第四讲数据挖掘技术及其应用宋执环浙江大学工业控制研究所控制科学与工程学系研究生课程工业控制技术研究所主要内容数据挖掘概述数据预处理数据挖掘算法-分类与预测数据挖掘算法-聚类数据挖掘算法-关联分析序列模式挖掘数据挖掘软件数据挖掘应用工业控制技术研究所一、数据挖掘概述工业控制技术研究所数据挖掘概念数据挖掘--从大量数据中寻找其规律的技术,是统计学、数据库技术和人工智能技术的综合。数据挖掘是从数据中自动地抽取模式、关联、变化、异常和有意义的结构;数据挖掘大部分的价值在于利用数据挖掘技术改善预测模型。数据挖掘与KDD工业控制技术研究所数据挖掘与KDD知识发现(KD)输出的是
2、规则数据挖掘(DM)输出的是模型共同点两种方法输入的都是学习集(learningsets)目的都是尽可能多的自动化数据挖掘过程数据挖掘过程并不能完全自动化,只能半自动化工业控制技术研究所数据挖掘的社会需求国民经济和社会的信息化社会信息化后,社会的运转是软件的运转社会信息化后,社会的历史是数据的历史工业控制技术研究所数据挖掘的社会需求数据挖掘数据库越来越大有价值的知识可怕的数据工业控制技术研究所数据挖掘的社会需求数据爆炸,知识贫乏苦恼:淹没在数据中;不能制定合适的决策!数据知识决策模式趋势事实关系模型关联规则序列目标市场资金分配贸易选择在哪儿做广告销售的地理位置金融经济政府POS.人口统计生命周
3、期工业控制技术研究所数据挖掘的发展1989IJCAI会议:数据库中的知识发现讨论专题KnowledgeDiscoveryinDatabases(G.Piatetsky-ShapiroandW.Frawley,1991)1991-1994KDD讨论专题AdvancesinKnowledgeDiscoveryandDataMining(U.Fayyad,G.Piatetsky-Shapiro,P.Smyth,andR.Uthurusamy,1996)1995-1998KDD国际会议(KDD’95-98)JournalofDataMiningandKnowledgeDiscovery(1997)19
4、98ACMSIGKDD,SIGKDD’1999-2002会议,以及SIGKDDExplorations数据挖掘方面更多的国际会议PAKDD,PKDD,SIAM-DataMining,(IEEE)ICDM,DaWaK,SPIE-DM,etc.工业控制技术研究所数据挖掘技术技术分类预言(Predication):用历史预测未来描述(Description):了解数据中潜在的规律数据挖掘技术关联分析序列模式分类(预言)聚集异常检测工业控制技术研究所异常检测异常检测是数据挖掘中一个重要方面,用来发现”小的模式”(相对于聚类),即数据集中间显著不同于其它数据的对象。异常探测应用电信和信用卡欺骗贷款审批药
5、物研究气象预报金融领域客户分类网络入侵检测故障检测与诊断等工业控制技术研究所什么是异常(outlier)?Hawkins(1980)给出了异常的本质性的定义:异常是在数据集中与众不同的数据,使人怀疑这些数据并非随机偏差,而是产生于完全不同的机制。聚类算法对异常的定义:异常是聚类嵌于其中的背景噪声。异常检测算法对异常的定义:异常是既不属于聚类也不属于背景噪声的点。他们的行为与正常的行为有很大不同。工业控制技术研究所异常检测方法的分类基于统计(statistical-based)的方法基于距离(distance-based)的方法基于偏差(deviation-based)的方法基于密度(densi
6、ty-based)的方法高维数据的异常探测工业控制技术研究所数据挖掘系统的特征数据的特征知识的特征算法的特征矿山(数据)挖掘工具(算法)金子(知识)工业控制技术研究所数据的特征大容量POS数据(某个超市每天要处理高达2000万笔交易)卫星图象(NASA的地球观测卫星以每小时50GB的速度发回数据)互联网数据含噪音(不完全、不正确)异质数据(多种数据类型混合的数据源,来自互联网的数据是典型的例子)工业控制技术研究所系统的特征知识发现系统需要一个前处理过程数据抽取数据清洗数据选择数据转换知识发现系统是一个自动/半自动过程知识发现系统要有很好的性能工业控制技术研究所知识(模式)的特征知识发现系统能够
7、发现什么知识?计算学习理论COLT(ComputationalLearningTheory)以FOL为基础的以发现关系为目的的归纳逻辑程序设计现行的知识发现系统只能发现特定模式的知识规则分类关联工业控制技术研究所知识表示:规则IF条件THEN结论条件和结论的粒度(抽象度)可以有多种单值区间模糊值规则可以有确信度精确规则概率规则工业控制技术研究所知识表示:分类树分类条件1分类条件2分类条件3类1类2
此文档下载收益归作者所有