机器学习十大算法之一

机器学习十大算法之一

ID:32427820

大小:337.04 KB

页数:8页

时间:2019-02-04

机器学习十大算法之一_第1页
机器学习十大算法之一_第2页
机器学习十大算法之一_第3页
机器学习十大算法之一_第4页
机器学习十大算法之一_第5页
资源描述:

《机器学习十大算法之一》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、机器学习十大算法之一:EM算法。一、最大似然      假设我们需要调查我们学校的男生和女生的身高分布。你怎么做啊?你说那么多人不可能一个一个去问吧,肯定是抽样了。假设你在校园里随便地活捉了100个男生和100个女生。他们共200个人(也就是200个身高的样本数据,为了方便表示,下面,我说“人”的意思就是对应的身高)都在教室里面了。那下一步怎么办啊?你开始喊:“男的左边,女的右边,其他的站中间!”。然后你就先统计抽样得到的100个男生的身高。假设他们的身高是服从高斯分布的。但是这个分布的均值u和方差∂2我们不知道,这两个参数就是我们要估计的。记作θ=[u,∂]T

2、。      用数学的语言来说就是:在学校那么多男生(身高)中,我们独立地按照概率密度p(x

3、θ)抽取100了个(身高),组成样本集X,我们想通过样本集X来估计出未知参数θ。这里概率密度p(x

4、θ)我们知道了是高斯分布N(u,∂)的形式,其中的未知参数是θ=[u,∂]T。抽到的样本集是X={x1,x2,…,xN},其中xi表示抽到的第i个人的身高,这里N就是100,表示抽到的样本个数。     由于每个样本都是独立地从p(x

5、θ)中抽取的,换句话说这100个男生中的任何一个,都是我随便捉的,从我的角度来看这些男生之间是没有关系的。那么,我从学校那么多男生中为什么

6、就恰好抽到了这100个人呢?抽到这100个人的概率是多少呢?因为这些男生(的身高)是服从同一个高斯分布p(x

7、θ)的。那么我抽到男生A(的身高)的概率是p(xA

8、θ),抽到男生B的概率是p(xB

9、θ),那因为他们是独立的,所以很明显,我同时抽到男生A和男生B的概率是p(xA

10、θ)*p(xB

11、θ),同理,我同时抽到这100个男生的概率就是他们各自概率的乘积了。用数学家的口吻说就是从分布是p(x

12、θ)的总体样本中抽取到这100个样本的概率,也就是样本集X中各个样本的联合概率,用下式表示:    这个概率反映了,在概率密度函数的参数是θ时,得到X这组样本的概率。因为这

13、里X是已知的,也就是说我抽取到的这100个人的身高可以测出来,也就是已知的了。而θ是未知了,则上面这个公式只有θ是未知数,所以它是θ的函数。这个函数放映的是在不同的参数θ取值下,取得当前这个样本集的可能性,因此称为参数θ相对于样本集X的似然函数(likehoodfunction)。记为L(θ)。     这里出现了一个概念,似然函数。还记得我们的目标吗?我们需要在已经抽到这一组样本X的条件下,估计参数θ的值。怎么估计呢?似然函数有啥用呢?那咱们先来了解下似然的概念。直接举个例子:     某位同学与一位猎人一起外出打猎,一只野兔从前方窜过。只听一声枪响,野兔应声

14、到下,如果要你推测,这一发命中的子弹是谁打的?你就会想,只发一枪便打中,由于猎人命中的概率一般大于这位同学命中的概率,看来这一枪是猎人射中的。     这个例子所作的推断就体现了极大似然法的基本思想。     再例如:下课了,一群男女同学分别去厕所了。然后,你闲着无聊,想知道课间是男生上厕所的人多还是女生上厕所的人比较多,然后你就跑去蹲在男厕和女厕的门口。蹲了五分钟,突然一个美女走出来,你狂喜,跑过来告诉我,课间女生上厕所的人比较多,你要不相信你可以进去数数。呵呵,我才没那么蠢跑进去数呢,到时还不得上头条。我问你是怎么知道的。你说:“5分钟了,出来的是女生,女生

15、啊,那么女生出来的概率肯定是最大的了,或者说比男生要大,那么女厕所的人肯定比男厕所的人多”。看到了没,你已经运用最大似然估计了。你通过观察到女生先出来,那么什么情况下,女生会先出来呢?肯定是女生出来的概率最大的时候了,那什么时候女生出来的概率最大啊,那肯定是女厕所比男厕所多人的时候了,这个就是你估计到的参数了。     从上面这两个例子,你得到了什么结论?      回到男生身高那个例子。在学校那么男生中,我一抽就抽到这100个男生(表示身高),而不是其他人,那是不是表示在整个学校中,这100个人(的身高)出现的概率最大啊。那么这个概率怎么表示?哦,就是上面那个

16、似然函数L(θ)。所以,我们就只需要找到一个参数θ,其对应的似然函数L(θ)最大,也就是说抽到这100个男生(的身高)概率最大。这个叫做θ的最大似然估计量,记为:有时,可以看到L(θ)是连乘的,所以为了便于分析,还可以定义对数似然函数,将其变成连加的:     好了,现在我们知道了,要求θ,只需要使θ的似然函数L(θ)极大化,然后极大值对应的θ就是我们的估计。这里就回到了求最值的问题了。怎么求一个函数的最值?当然是求导,然后让导数为0,那么解这个方程得到的θ就是了(当然,前提是函数L(θ)连续可微)。那如果θ是包含多个参数的向量那怎么处理啊?当然是求L(θ)对所

17、有参数的偏导数,也就是梯

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。