欢迎来到天天文库
浏览记录
ID:32378391
大小:364.00 KB
页数:10页
时间:2019-02-04
《外文翻译(机械)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、ApplicationofBayesianInferencetoMillingForceModelingJaydeepM.Karandikar,TonyL.SchmitzandAliE.AbbasAbstractThispaperdescribestheapplicationofBayesianinferencetotheidentificationofforcecoefficientsinmilling.Mechanisticcuttingforcecoefficientshavebeentraditionallydetermi
2、nedbyperformingalinearregressiontothemeanforcevaluesmeasuredoverarangeoffeedpertoothvalues.Thislinearregressionmethod,however,yieldsadeterministicresultforeachcoefficientandrequirestestingatseveralfeedpertoothvaluestoobtainahighlevelofconfidenceintheregressionanalysis
3、.Bayesianinference,ontheotherhand,providesasystematicandformalwayofupdatingbeliefswhennewinformationisavailablewhileincorporatinguncertainty.Inthiswork,meanforcedataisusedtoupdatethepriorprobabilitydistributions(initialbeliefs)offorcecoefficientsusingtheMetropolis-Has
4、tings(MH)algorithmMarkovchainMonteCarlo(MCMC)approach.Experimentsareperformedatdifferentradialdepthsofcuttodeterminethecorrespondingforcecoefficientsusingbothmethodsandtheresultsarecompared.IntroductionInmetalcuttingoperations,thecuttingforcecanbemodeledusingthechipar
5、eaandempiricalconstantsthatdependonthetool-workpiececombination.Themechanisticcuttingforcecoefficientsaredeterminedusingalinearregressiontothemeanforcevaluesmeasuredoverarangeoffeedpertoothvalues[1].However,theleastsquaresmethodhastwolimitations.First,themethodrequire
6、dtestingatseveralfeedpertoothvaluestoachieveahighlevelofconfidenceintheregression.Second,formicromillingapplicationsormachiningparameters(radialandaxialdepth)resultinginameanforcevalueclosetozero,thesignaltonoiseratioisverysmallwhichcanresultinapoorleastsquaresfit.Toa
7、ddresstheselimitations,thepaperdemonstratesmillingforcemodelingusingtheMCMCmethodforBayesianinference.TheadvantageofusingBayesianinferenceisthatexperimentsovermultiplefeedpertoothvalues,whichcanbetimeconsumingandcostly,arenotnecessaryfordeterminingthecuttingforcecoeff
8、icientvalues.Inaddition,theuncertaintyintheforcecoefficientscanbeevaluatedbycombiningpriorknowledgeandexperimentaldata.Thema
此文档下载收益归作者所有