云计算和大数据重点专项8年度项目申报指南-国家科技部

云计算和大数据重点专项8年度项目申报指南-国家科技部

ID:32357076

大小:196.33 KB

页数:19页

时间:2019-02-03

云计算和大数据重点专项8年度项目申报指南-国家科技部_第1页
云计算和大数据重点专项8年度项目申报指南-国家科技部_第2页
云计算和大数据重点专项8年度项目申报指南-国家科技部_第3页
云计算和大数据重点专项8年度项目申报指南-国家科技部_第4页
云计算和大数据重点专项8年度项目申报指南-国家科技部_第5页
资源描述:

《云计算和大数据重点专项8年度项目申报指南-国家科技部》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、国科发资〔2017〕294号附件6ĐᏠଐႯਜ਼ࡍၫ௣đᒮ࢛ᓜሲ2018ฤࣞሲ෹࿺ۨᒎฉ为落实《国家中长期科学和技术发展规划纲要(2006-2020年)》,以及国务院《关于促进云计算创新发展,培育信息产业新业态的意见》和《关于印发促进大数据发展行动纲要的通知》等提出的任务,国家重点研发计划启动实施“云计算和大数据”重点专项。根据本重点专项实施方案的部署,现发布2018年度项目申报指南。本重点专项总体目标是:形成自主可控的云计算和大数据技术体系、标准规范和解决方案;在云计算与大数据的重大设备、核心软件、支撑平台等方面突破一批关键技术;基本形成以云计算与大数据骨干企业

2、为主体的产业生态体系和具有全球竞争优势的云计算与大数据产业集群;提升资源汇聚、数据收集、存储管理、分析挖掘、安全保障、按需服务等能力,实现核心关键技术自主可控。本重点专项按照云计算和大数据基础设施、基于云模式和数据驱动的新型软件、大数据分析应用与类人智能、云端融合的感知认知与人机交互等4个创新链(技术方向),共部署31个重点—1—研究任务。专项实施周期为5年(2016—2020年)。2016年,本重点专项在4个技术方向已启动12个研究任务的15个项目。2017年,在4个技术方向已启动15个研究任务的15个项目。2018年,在4个技术方向启动20个研究任务,拟支

3、持20-40个项目,拟安排国拨经费总概算为6.25亿元。凡企业牵头的项目须自筹配套经费,配套经费总额与国拨经费总额比例不低于1:1。项目统一按指南二级标题(如1.1)的研究方向组织申报。除特殊说明外,拟支持项目数均为1-2项。项目实施周期不超过3年。申报项目的研究内容须涵盖该二级标题下指南所列的全部考核指标。项目下设课题数原则上不超过5个,每个课题参研单位原则上不超过5个。项目设1名项目负责人,项目中每个课题设1名课题负责人。指南中“拟支持项目数为1-2项”是指:在同一研究方向下,当出现申报项目评审结果前两位评价相近、技术路线明显不同的情况时,可同时支持这2个

4、项目。2个项目将采取分两个阶段支持的方式。第一阶段完成后将对2个项目执行情况进行评估,根据评估结果确定后续支持方式。1.云计算和大数据基础设施1.1数据科学的若干基础理论(基础研究类)研究内容:研究大数据的统一表示和有效度量;研究大数据—2—的新型计算复杂性理论;研究高通量计算理论与算法;研究近似计算理论与算法;研究数据副本一致性理论、数据压缩与摘要理论;研究数据数据权属理论等。考核指标:形成有国际性影响的数据科学理论体系,研制可验证其理论和算法有效性的原型系统,发表一批高水平学术论文和若干专著。在关键技术上申请系列专利,形成专利群。1.2基于非易失存储器(N

5、VM)的TB级持久性内存存储技术与系统(共性关键技术类)研究内容:研究基于持久性内存的混合主存系统I/O栈与存储管理策略;研究分布式持久性内存文件系统;研究基于远程直接数据存取(RDMA)的分布式持久性共享内存新型编程模型及其应用编程接口;构建分布式持久性内存存储系统;研制基于TB级内存系统的典型大数据应用系统扩展并示范应用。考核指标:研制不少于8节点的内存存储系统,每节点均包含TB级非易失性内存;分布式内存系统中节点间通信延迟不超过1µs,高负载通信延迟不超过10µs,带宽可扩展,8节点带宽不低于40GB/s;读操作ops不低于5000万/s,写操作ops不

6、低于1000万/s;在ZB级大数据场景下应用于1-3个典型领域。在关键技术上申请系列专利,形成专利群,发表一批高水平学术论文。1.3面向异构体系结构的高性能分布式数据处理技术与系统(共性关键技术类)—3—研究内容:面向分布式异构体系结构,研究基于数据流的编程模型、性能分析方法、同步与通信技术和运行时系统,并实现高通量视频等典型应用示范。具体内容:支持异构体系结构上的数据流编程模型与软件工具链;异构体系结构上的运行时系统,支持CPU与加速器之间的高效率混合执行,支持加速器上的细粒度流水线并行;性能分析技术和优化调度技术,优化分配CPU与加速器上的运行资源;分布式

7、异构系统数据处理技术,包括数据与计算的高效划分技术、负载平衡以及高性能同步与通信技术。考核指标:支持CPU-GPU异构体系结构,并支持单机多加速器和多机多加速器。性能分析工具支持多种程序执行模式的优化选取,并可给出混合模式时的CPU-GPU执行比例。支持单个GPUSM上部署多个核(kernel)的细粒度任务调度,以及以此为基础的流水线并行模式。单机和多机(不低于8台服务器16块GPU)上CPU/GPU细粒度混合执行的应用性能是当前通用CPU的5倍以上,是仅实现粗粒度并行性的GPU的2倍以上。在关键技术上申请系列专利,形成专利群,发表一批高水平学术论文。1.4面

8、向图计算的通用计算机技术与系统(共性关

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。