led驱动芯片中集成自举控制电路的设计

led驱动芯片中集成自举控制电路的设计

ID:32334884

大小:6.19 MB

页数:56页

时间:2019-02-03

led驱动芯片中集成自举控制电路的设计_第1页
led驱动芯片中集成自举控制电路的设计_第2页
led驱动芯片中集成自举控制电路的设计_第3页
led驱动芯片中集成自举控制电路的设计_第4页
led驱动芯片中集成自举控制电路的设计_第5页
资源描述:

《led驱动芯片中集成自举控制电路的设计》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、万方数据目录摘要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..IAbstract⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.I目录⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..⋯第一章绪论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.11.1论文的背景与意义⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11.2自举电路的国内外现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.81.3研究内容和设计指标⋯

2、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯91.4论文组织结构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..10第二章传统动态背栅偏置的集成自举控制电路⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯132.1传统动态背栅偏置的集成自举控制电路的基本原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..132.2传统动态背栅偏置的集成自举控制电路的性能分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..182.3本章小结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..25第三章新型高充电效率的集成自举控制电路设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯273.1栅极驱动电路输入信号

3、的设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯273.2栅极驱动电路的设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..303.3整体电路的设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..363.4整体电路仿真分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..423.5本章小结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..44第四章版图设计与仿真结果⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯454.1工艺介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..454.2版图设计⋯⋯⋯

4、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯464.3后仿结果总结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯504.4本章小结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯51第五章总结与展望⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯535.1总结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯53S.2展望⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯54万方数据东南大学工程硕士学位论文参考文献⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

5、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.57硕士期间取得成果⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.61IV万方数据第一章绪论本章将简要阐述本课题的研究背景,即LED驱动芯片的应用背景及其驱动芯片内电路基本结构和原理,简要介绍了集成自举的控制电路的研究意义,回顾集成自举的控制电路的发展和现状,并简述本文研究的重点——提出集成自举的控制电路的主要研究内容和目标,同时给出本文的主要工作和结构安排。1.1论文的背景与意义1.1.1LED驱动芯片介绍发光二级管(Light—EmittingDiode,LED)作为绿色环保的主角和

6、新型半导体照明成员,由于发光效率高、功耗低、体积小、寿命长、环保无汞无辐射、坚固耐用等优点,在当今节能环保的大潮下适时而生,而LED显示器以其色彩鲜艳、动态范围广、亮度高、寿命长、工作稳定可靠等优点,成为最具优势的公众显示媒体,LED照明系统架构选择取决于设计目标是低成本、高效率还是最小印刷电路板(Printedcircuitboard,PCB)面积。一般来说,小于25W的LED照明系统的驱动芯片不要求进行功率校正,因此可以采取简单一些的拓扑架构。25W-100W的LED照明应用的驱动芯片要求进行功率校正,因此一般采用单级PFC、准谐振(QR

7、)PWM或反激式拓扑⋯。100W以上LED照明应用的驱动芯片一般采用效率更高的LLC拓扑和PFC。大多数的LED驱动电路属于下列拓扑类型:降压型、升压型、降压一升压型、SEPIC和反激拓扑。为了实现更高效的LED照明,需要有新的拓扑结构来提供解决方案,从反激式拓扑结构转向谐振半桥拓扑结构。除此之外还有简易的限流电阻器或线性稳压器来驱动LED,但是此类方法通常会浪费过多功率。本文所涉及的LED驱动芯片集PFC和半桥驱动电路于一体‘21,为功率开关管提供两路带死区时间的互补驱动信号,不仅能简化系统设计,而且能降低成本,节省能源。由于系统低功耗和高

8、可靠性要求,芯片可直接驱动功率开关MOS管;高侧通道悬浮地电压最大值600V;内部集成LDMOS构成的自举二极管仿真电路;能实现脉宽调变(Pulse.WidthMo

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。