基于智能算法的燃煤电站锅炉经济运行与nox排放多目标优化研究

基于智能算法的燃煤电站锅炉经济运行与nox排放多目标优化研究

ID:32061060

大小:1.21 MB

页数:72页

时间:2019-01-31

基于智能算法的燃煤电站锅炉经济运行与nox排放多目标优化研究_第1页
基于智能算法的燃煤电站锅炉经济运行与nox排放多目标优化研究_第2页
基于智能算法的燃煤电站锅炉经济运行与nox排放多目标优化研究_第3页
基于智能算法的燃煤电站锅炉经济运行与nox排放多目标优化研究_第4页
基于智能算法的燃煤电站锅炉经济运行与nox排放多目标优化研究_第5页
资源描述:

《基于智能算法的燃煤电站锅炉经济运行与nox排放多目标优化研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ABSTRACTABSTRACTIntelligentalgorithmwasappliedtomulti-objectiveoptimizationofboilercombustionisoneoftheimportantmeasuresforenergyconservationandemissionsreduction,inthispaper,basedonavarietyofintelligentalgorithm,multi-objectiveoptimizationwascarriedoutontheboilercombustion.Fir

2、stofall,takinga660MWcoal-firedboilerastheresearchobject,usingBPartificialneuralnetworktoestablishtheboilercombustionpredictionmodelinthecaseofa660MWload,with23boilercombustionoperationparametersastheinput,theboilerthermalefficiencyandNOxemissionsfortheoutput.Therangeofmodeltrai

3、ningerroris-1.110-9and1.3310-9,theabsolutevalueofNOxemissioncalibrationsampleaverageerroris3.0398%,theabsolutevalueoftheboilerthermalefficiencycalibrationsampleaverageerroris0.1129%,thepredictionmodelhashigheraccuracyandgoodgeneralization.Basedonthepredictionmodelsofthecombus

4、tion,boilercombustionoptimizationmodelissetupusinggeneticalgorithmoptimizationalgorithm,amongthem,theweightcoefficientmethodisusedtotransformedthemulti-objectiveoptimizationproblemintoasingleobjectiveoptimizationproblem,anddifferentweightratio(0.1-0.9、0.2-0.8、0.3-0.7、0.4-0.6、0.

5、5-0.5、0.6-0.4、0.7-0.3、0.8-0.2)wereoptimizedrespectively.Theoptimizingresultsunderdifferentweightratioisdifferent,astheweightratioofNOxemissionsandthethermalefficiencyoftheboilerfrom1-9graduallyincreaseto8-2,thevalueofNOxemissionsby176mg/m3declinegraduallyto111mg/m3,theboilercom

6、bustionheatlossgraduallyrisefrom4.24%(Theboilerthermalefficiencyis95.76%)to6.05%(Theboilerthermalefficiencyis93.95%).AllofitssolutionsetformtheParetosolutionset,andpresentstheconcaveParetofrontier.Thefourthchapterintroducedthemulti-objectiveevolutionaryalgorithmbasedondecomposi

7、tiontotheboilercombustionmulti-objectiveoptimization,Chebyshevdecompositionstrategyisusedforboilercombustionoptimization,theoptimizedNOxemissionsintherangeof112mg/m3~183mg/m3,boilerheatlossis4.3%~5.8%,comparedwiththetraditionalgeneticalgorithm,theoptimizationeffectisabitpoor,an

8、deachhaveadvantagesandIV万方数据ABSTRACTdisadvantagesofbot

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。