粒子群优化算法与其应用-研究

粒子群优化算法与其应用-研究

ID:32025131

大小:1.96 MB

页数:40页

时间:2019-01-30

粒子群优化算法与其应用-研究_第1页
粒子群优化算法与其应用-研究_第2页
粒子群优化算法与其应用-研究_第3页
粒子群优化算法与其应用-研究_第4页
粒子群优化算法与其应用-研究_第5页
资源描述:

《粒子群优化算法与其应用-研究》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、宁夏大学硕士学位论文第一章绪论间任务调度、实时机器人路径规划、图像分割、EEG信号模拟、语音识别、烧伤诊断以及探测移动目标等方面已经得到成功的应用,粒子群优化算法具有很多优点,主要体现在对整个种群进行群体搜索,能记忆个体最优解,算法的原理简单,易于理解编程实现,协同搜索,通过群体的全局最优信息和个体局部信息共同完成,易于与其它算法相互混合,能构造出具有更好优化性能的新算法,相对于蚂蚁群算法等其它智能优化算法,此算法能够较快收敛到全局最优位置.1.2课题的国内外研究现状粒子群优化算法(简称PSO)是1995年提出的,由于其原理简单易懂,以及

2、前面给出的许多优点,因此使得很多研究学者对这种算法产生浓厚的兴趣且对这种算法进行研究,目前针对粒子群优化算法的研究已经取得了很大的进展,包括应用研究和理论研究,这些进展主要体现在以下几方面:(1)针对粒子群优化算法容易陷入早熟收敛和为了提高粒子的收敛速度而进行的研究.文献[21]提出了一种简化的自适应粒子群优化算法,针对带有收缩因子的粒子群优化算法(CFPSO)容易陷入局部最优位置、进化后期的收敛速度慢和求解精度低等缺点,文中采用了自适应简化粒子群优化(AsCFPSO)方程与混沌搜索技术相结合的方法,提出了基于混沌搜索的自适应简化粒子群优

3、化(CAsCFPSO)算法;文献[22]中美国的Shi和Eberhart研究发现,PSO算法中等式的第一部分为速度因子,由于此种算法具有随机性和扩大搜索空间的优点,因此研究学者们为了控制粒子以前飞行速度对当前飞行速度的影响,引入了惯性权重,它的作用是平衡算法的全局寻优能力和局部寻优能力,即平衡算法的收敛速度和收敛精度,表现为惯性权重的取值越大,则粒子群算法的全局寻优能力就越强,反之,惯性权重的取值越小,则粒子群算法的局部寻优能力就越强.为了能找到更好的惯性权重的选取方法,使得粒子在局部和全局之间更好的搜索,许多研究学者进行了大量的研究,提

4、出了惯性权重的不同选取策略:文献[24]提出了一种动态改变惯性权重的方法,文献[25]给出了一种非线性改变惯性权重的方法,文献[26]提出了一种基于混沌的动态改变惯性权重的方法,文献[27]根据粒子适应度值改变惯性权重的选取方法,以上提到的改变惯性权重的方法提高了粒子群优化算法的全局寻优能力.PSO作为一种新的随机优化算法,它的缺点也表现在容易陷入早熟收敛和全局收敛速度慢这两个方面,为了避免粒子群算法过早陷入早熟收敛的缺点,许多研究学者通过控制种群的多样性来提高算法性能,文献[28]针对基本PSO算法存在易陷入局部最优位置的缺点,提出了一

5、种新型的PSO算法——混合变异粒子群优化算法.在每次迭代过程中,对满足变异条件的粒子,以多种变异函数方式进行变异,而这些变异函数分别被给予了一定概率,概率的划分取决于特定的优化问题.文献[29]针对粒子群优化算法容易早熟、收敛精度低等缺点,通过采用全变异策略、最大搜索速度自适应调整等策略给出了一种全变异粒子群优化算法.文献[30]提出了一种基于群能量恒定的粒子群优化算法,该算法根据粒子内能进行动态分群,对于具有比较好的适应度值的小群体采取引入最差粒子的速度公式更新方法,对于具有比较差的适应度值的小群体采取带有惩罚机制的速度公式更新方法,用

6、其分担由于较优群体速度降低而产生的整群能量的损失,从而有效地克服了PSO算法的早熟.(2)为增强PSO全局搜索能力而进行的研究.文献[31]针对粒子群优化算法容易陷入局部最优解的问题,采用了协同处理的粒子群优化算法:对于种群中适应度值差于平均适应度值的粒子,2宁夏大学硕士学位论文第一章绪论采用动态Zaslavskii混沌映射公式调整粒子的惯性权重;对于种群中适应度值优于或等于平均适[32][33]应度值的粒子,采用动态非线性函数公式调整粒子的惯性权重.Higashi、NingLi、吕振肃[34]等人分别提出了自己的变异粒子群优化算法,其基

7、本思路都是想通过引入变异算子以此来跳出局部最优值的吸引,提高算法的全局寻优能力,从而得到精度较高的计算结果.(3)与其它算法的结合.Das等人将差分进化(DE)引入粒子群算法速度更新公式中从而提出了PSO-DE算法.高鹰等提出的基于模拟退火算法(SA)的粒子群优化算法是以基本粒子群算法的具体流程作为主要运算流程,把模拟退火机制引入粒子群算法,与粒子群算法的求解速度快、易于编程实现等优点与具有非常好的跳出局部最优解能力的模拟退火算法相结合,避免了粒子群优化算法容易陷入局部最优值点的缺陷,从而加快了粒子群算法在进化后期的收敛速度.尽管对粒子群

8、算法的研究已经取得了很大的进展,但对算法本身的工作原理、算法内部机理还没有真正建立,算法中参数的取值还不够恰当,PSO的研究热点主要体现在以下几方面:(1)与其它智能优化算法的融合.将PSO和

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。