欢迎来到天天文库
浏览记录
ID:31957339
大小:62.50 KB
页数:9页
时间:2019-01-29
《小学数学各类应用题类型与解题方法》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、可编辑版小学数学各类应用题类型及解题方法2016-06-05 少儿教育与心理辅导差倍问题:已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。基本关系式是:两数差÷倍数差=较小数。例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。原来两堆煤各有多少吨?分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:(40-5×2)÷(3-1)-5=(40-10)÷2-5=30÷2-5=15
2、-5=10(吨)第一堆煤的重量 10+40=50(吨)→第二堆煤的重量答:第一堆煤有10吨,第二堆煤有50吨和差问题:已知两个数的和与差,求这两个数的应用题,叫做和差问题。一般关系式有:(和-差)÷2=较小数(和+差)÷2=较大数。 例:甲乙两数的和是24,甲数比乙数少4,求甲乙两数各是多少?(24+4)÷2=28÷2=14乙数(24-4)÷2=20÷2=10甲数 答:甲数是10,乙数是14Word完美格式可编辑版差倍问题:已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。基本关系式是:两数差
3、÷倍数差=较小数例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。原来两堆煤各有多少吨?分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:(40-5×2)÷(3-1)-5=(40-10)÷2-5=30÷2-5=15-5=10(吨)第一堆煤的重量 10+40=50(吨)→第二堆煤的重量答:第一堆煤有10吨,第二堆煤有50吨。还原问题:已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般
4、叫做还原问题。 还原问题是逆解应用题。一般根据加、减法,乘、除法的互逆运算的关系。由题目所叙述的的顺序,倒过来逆顺序的思考,从最后一个已知条件出发,逆推而上,求得结果。例:仓库里有一些大米,第一天售出的重量比总数的一半少12吨。第二天售出的重量,比剩下的一半少12吨,结果还剩下19吨,这个仓库原来有大米多少吨?分析:如果第二天刚好售出剩下的一半,就应是19+12吨。第一天售出以后,剩下的吨数是(19+12)×2吨。以下类推。列式:[(19+12)×2-12]×2=[31×2-12]×2 =[62-12]×2 =
5、50×2=100(吨)答:这个仓库原来有大米100吨。Word完美格式可编辑版置换问题:题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=2000(分),比原来的总值多2000-1880=120(分)。而这个多的120分,是把10分一
6、张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。列式:(2000-1880)÷(20-10) =120÷10=12(张)→10分一张的张数100-12=88(张)→20分一张的张数或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。五盈亏问题(盈不足问题):题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。解答这类问题时,应该先将两种分配方案进行比较,求出由于每
7、份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。其计算方法是:当一次有余数,另一次不足时:每份数=(余数+不足数)÷两次每份数的差当两次都有余数时:总份数=(较大余数-较小数)÷两次每份数的差当两次都不足时:总份数=(较大不足数-较小不足数)÷两次每份数的差Word完美格式可编辑版例1、解放军某部的一个班,参加植树造林活动。如果每人栽5棵树苗,还剩下14棵树苗;如果每人栽7棵,就差4棵树苗。求这个班有多少人?一共有多少棵树苗分析:由条件可知,这道题属第一种情况。 列式
8、:(14+4)÷(7-5)=18÷2=9(人) 5×9+14=45+14=59(棵) 或:7×9-4 =63-4=59(棵) 答:这个班有9人,一共有树苗59棵。年龄问题:年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。常用的计算公式是:成倍时小的年龄=大小年龄之差÷(倍数-1)几年前的年龄=小的现年-成倍数时小的年龄几年后的年龄=成倍时小的年龄-小的现在年龄例父亲今年54岁
此文档下载收益归作者所有