资源描述:
《定积分典型例题(word版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、定积分典型例题例1求.分析将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解将区间等分,则每个小区间长为,然后把的一个因子乘入和式中各项.于是将所求极限转化为求定积分.即==.例2=_________.解法1由定积分的几何意义知,等于上半圆周()与轴所围成的图形的面积.故=.解法2本题也可直接用换元法求解.令=(),则====例3比较,,.分析对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比
2、较被积函数之间的大小来确定积分值的大小.解法1在上,有.而令,则.当时,,在上单调递增,从而,可知在上,有.又,从而有.解法2在上,有.由泰勒中值定理得.注意到.因此.例4估计定积分的值.分析要估计定积分的值,关键在于确定被积函数在积分区间上的最大值与最小值.解设,因为,令,求得驻点,而,,,故,从而,所以.例5设,在上连续,且,.求.解由于在上连续,则在上有最大值和最小值.由知,.又,则.由于,故=.例6求,为自然数.分析这类问题如果先求积分然后再求极限往往很困难,解决此类问题的常用方法是利用积分中值定理与夹逼准则.解法1利用积分中值定理设,显然在上连续,由积
3、分中值定理得,,当时,,而,故.解法2利用积分不等式因为,而,所以.例7求.解法1由积分中值定理可知=,.又且,故.解法2因为,故有.于是可得.又由于.因此=.例8设函数在上连续,在内可导,且.证明在内存在一点,使.分析由条件和结论容易想到应用罗尔定理,只需再找出条件即可.证明由题设在上连续,由积分中值定理,可得,其中.于是由罗尔定理,存在,使得.证毕.例9(1)若,则=___;(2)若,求=___.分析这是求变限函数导数的问题,利用下面的公式即可.解(1)=;(2)由于在被积函数中不是积分变量,故可提到积分号外即,则可得=.例10设连续,且,则=_______
4、__.解对等式两边关于求导得,故,令得,所以.例11函数的单调递减开区间为_________.解,令得,解之得,即为所求.例12求的极值点.解由题意先求驻点.于是=.令=,得,.列表如下:-+-故为的极大值点,为极小值点.例13已知两曲线与在点处的切线相同,其中,,试求该切线的方程并求极限.分析两曲线与在点处的切线相同,隐含条件,.解由已知条件得,且由两曲线在处切线斜率相同知.故所求切线方程为.而.例14求;分析该极限属于型未定式,可用洛必达法则.解=====.注此处利用等价无穷小替换和多次应用洛必达法则.例15试求正数与,使等式成立.分析易见该极限属于型的未定
5、式,可用洛必达法则.解==,由此可知必有,得.又由,得.即,为所求.例16设,,则当时,是的().A.等价无穷小.B.同阶但非等价的无穷小.C.高阶无穷小.D.低阶无穷小.解法1由于.故是同阶但非等价的无穷小.选B.解法2将展成的幂级数,再逐项积分,得到,则.例17证明:若函数在区间上连续且单调增加,则有.证法1令=,当时,,则===.故单调增加.即,又,所以,其中.从而=.证毕.证法2由于单调增加,有,从而.即==.故.例18计算.分析被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解===.注在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可
6、积条件.如,则是错误的.错误的原因则是由于被积函数在处间断且在被积区间内无界.例19计算.分析被积函数在积分区间上实际是分段函数.解例20设是连续函数,且,则.分析本题只需要注意到定积分是常数(为常数).解因连续,必可积,从而是常数,记,则,且.所以,即,从而,所以.例21设,,,求,并讨论的连续性.分析由于是分段函数,故对也要分段讨论.解(1)求的表达式.的定义域为.当时,,因此.当时,,因此,则==,故.(2)在及上连续,在处,由于,,.因此,在处连续,从而在上连续.错误解答(1)求的表达式,当时,.当时,有=.故由上可知.(2)在及上连续,在处,由于,,.
7、因此,在处不连续,从而在上不连续.错解分析上述解法虽然注意到了是分段函数,但(1)中的解法是错误的,因为当时,中的积分变量的取值范围是,是分段函数,才正确.例22计算.分析由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性.解=.由于是偶函数,而是奇函数,有,于是===由定积分的几何意义可知,故.例23计算.分析被积函数中含有及,考虑凑微分.解=====.例24计算.解=====.注此题为三角有理式积分的类型,也可用万能代换公式来求解,请读者不妨一试.例25计算,其中.解=,令,则===.注若定积分中的被积函数含有,一般令或.例26计算,其中.解法1令,则
8、=.解法2令,则=.又令