高考专题---函数与导数理-高考题和高考模拟题数学(理)分项版---精校解析 Word版

高考专题---函数与导数理-高考题和高考模拟题数学(理)分项版---精校解析 Word版

ID:31823974

大小:4.36 MB

页数:26页

时间:2019-01-19

高考专题---函数与导数理-高考题和高考模拟题数学(理)分项版---精校解析 Word版_第1页
高考专题---函数与导数理-高考题和高考模拟题数学(理)分项版---精校解析 Word版_第2页
高考专题---函数与导数理-高考题和高考模拟题数学(理)分项版---精校解析 Word版_第3页
高考专题---函数与导数理-高考题和高考模拟题数学(理)分项版---精校解析 Word版_第4页
高考专题---函数与导数理-高考题和高考模拟题数学(理)分项版---精校解析 Word版_第5页
资源描述:

《高考专题---函数与导数理-高考题和高考模拟题数学(理)分项版---精校解析 Word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.函数与导数1.【2018年浙江卷】函数y=sin2x的图象可能是A.B.C.D.【答案】D点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A.B.C.D.【答案】D【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果.详解:由题意结合对数函数的性质可知:,,,据此可得:.本题选择D选项.

2、点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是A.[–1,0)B.[0,+∞)C.[–1,+∞)D.[1,+∞)【答案】C详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直

3、线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为A.B.C.D.【答案】D点睛:该题考查的是有关曲线在某个点处的切线方程的问

4、题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.5.【2018年全国卷Ⅲ理】设,,则A.B.C.D.【答案】B【解析】分析:求出,得到的范围,进而可得结果。详解:.,,,,即,又,即,故选B.点睛:本题主要考查对数的运算和不等式,属于中档题。6.【2018年理数全国卷II】已知是定义域为的奇函数,满足.若,则A.B.0C.2D.50【答案】C点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶

5、性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.7.【2018年理数全国卷II】函数的图像大致为A.AB.BC.CD.D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.8.【2018年浙江卷】已知λ∈R,函数f(x)=,当λ=2时

6、,不等式f(x)<0的解集是___________.若函数f(x)恰有2个零点,则λ的取值范围是___________.【答案】(1,4)当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为.点睛:已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.9.【2018年浙江卷】我国古代数学著作《张邱建算经》中记载

7、百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为,,,则当时,___________,___________.【答案】811【解析】分析:将z代入解方程组可得x,y值.详解:点睛:实际问题数学化,利用所学的知识将陌生的性质转化为我们熟悉的性质,是解决这类问题的突破口.10.【2018年理数天津卷】已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________.【答案】,,原问题等价于函数与函数有两个不同的交点,求的取值范围.结合对勾函数和函数图象平移的规

8、律绘制函数的图象,同时绘

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。