zmj-8146-29851.doc

zmj-8146-29851.doc

ID:31807128

大小:56.50 KB

页数:3页

时间:2019-01-18

zmj-8146-29851.doc_第1页
zmj-8146-29851.doc_第2页
zmj-8146-29851.doc_第3页
资源描述:

《zmj-8146-29851.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、第四课时等差数列(二)教学目标:明确等差中项的概念,进一步熟练掌握等差数列的通项公式及推导公式;培养学生的应用意识,提高学生的数学素质.教学重点:等差数列的定义、通项公式、性质的理解与应用.教学难点:灵活应用等差数列的定义及性质解决一些相关问题.教学过程:Ⅰ.复习回顾等差数列定义:an-an-1=d(n≥2),等差数列通项公式:an=a1+(n-1)d(n≥1),推导公式:an=am+(n-m)dⅡ.讲授新课首先,请同学们来思考这样一个问题.问题1:如果在a与b中间插入一个数A,使a、A、b成等差数列,那么A应满足什么条件?由等差数列定义及a

2、、A、b成等差数列可得:A-a=b-A,即:a=.反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列.总之,A=a,A,b成等差数列.如果a、A、b成等差数列,那么a叫做a与b的等差中项.不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项.如数列:1,3,5,7,9,11,13,……中,3是1和5的等差中项,5是3和7的等差中项,7是5和9的等差中项等等.进一步思考,同学们是否还发现什么规律呢?比如5不仅是3和7的等差中项,同时它也是1和9的等差中项,即不仅满足5=,同时还满

3、足5=.再如7不仅是5和9的等差中项,同时它也是3和11的等差中项,还是1和13的等差中项,即:7===.看来,a2+a4=a1+a5=2a3,a4+a6=a3+a7=2a5依此类推,可得在一等差数列中,若m+n=p+q,则am+an=ap+aq.下面,我们来看一个实际问题.[例1]梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度.分析:首先要数学建模,即将实际问题转化为数学问题,然后求其解,最后还要结合实际情况将其还原为实际问题的解.解:用{an}表示梯子自上而下各级宽度所成的等差数列

4、,由已知条件,有a1=33,a12=110,n=12.由通项公式,得a12=a1+(12-1)d,即:110=33+11d,解得:d=7.因此,a2=33+7=40,a3=40+7=47,a4=54,a5=61,a6=68,a7=75,a8=82,a9=89,a10=96,a11=103.3--答案:梯子中间各级的宽度从上到下依次是40cm,47cm,54cm,61cm,68cm,75cm,82cm,89cm,96cm,103cm.评述:要注意将模型的解还原为实际问题的解.[例2]已知数列的通项公式为an=pn+q,其中p、q是常数,且p≠0

5、,那么这个数列是否一定是等差数列?如果是,其首项与公差是什么?分析:由等差数列的定义,要判定{an}是不是等差数列,只要看an-an-1(n≥2)是不是一个与n无关的常数就行了.解:取数列{an}中的任意相邻两项an-1与an(n≥2),an-an-1=(pn+q)-[p(n-1)+q]=pn+q-(pn-p+q)=p它是一个与n无关的常数,所以{an}是等差数列,且公差是p.在通项公式令n=1,得a1=p+q,所以这个等差数列的首项是p+q,公差是p.看来,等差数列的通项公式可以表示为:an=pn+q(其中p、q是常数)当p=0时,它是一常

6、数数列,从图象上看,表示这个数列的各点均在y=q的图象上.当p≠0时,它是关于n的一次式,从图象上看,表示这个数列的各点均在一次函数y=px+q的图象上.例如,首项是1,公差是2的无穷等差数列的通项公式为:an=2n-1,相应的图象是直线y=2x-1上的均匀排开的无穷多个孤立点.如图所示:[例3]已知三个数成等差数列,其和为15,其平方和为83,求此三个数.解:设此三数分别为x-d、x、x+d则解得x=5,d=±2.∴所求三个数列分别为3、5、7或7、5、3.评述:三个数成等差数列时注意其设法.[例4]已知数列{an}为等差数列,a1=2,a

7、2=3,若在每相邻两项之间插入三个数后,和原数列仍构成一个等差数列,试问:(1)原数列的第12项是新数列的第几项?(2)新数列的第29项是原数列的第几项?分析:运用递推归纳的思想方法,从特殊中找规律,得到或猜想出一般结论,然后再回到特殊解决问题,这应该是解决本题的一个基本途径.解:原数列的第一项是新数列的第1项,原数列的第二项是新数列的第2+3=5项,原数列的第三项是新数列的第3+2×3=9项.……原数列的第n项是新数列的第n+(n-1)×3=4n-3项.(1)当n=12时,4n-3=4×12-3=45,故原数列的第12项是新数列的第45项.

8、(2)令4n-3=29,解得n=8,故新数列的第29项是原数列的第8项.评述:一般地,在公差为d的等差数列每相邻两项之间插入m个数,构成一个新的等差数列,则新数列的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签