欢迎来到天天文库
浏览记录
ID:31807108
大小:126.50 KB
页数:14页
时间:2019-01-18
《搜索引擎链接分析算法之:SALSA算法》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、SALSA算法的初衷希望能够结合PageRank和HITS算法两者的主要特点,既可以利用HITS算法与查询相关的特点,也可以采纳PageRank的“随机游走模型”,这是SALSA算法提出的背景。由此可见,SALSA算法融合了PageRank和HITS算法的基本思想,从实际效果来说,很多实验数据表明,SALSA的搜索效果也都优于前两个算法,是目前效果最好的外链链接分析算法之一。 从整体计算流程来说,可以将SALSA划分为两个大的阶段:首先是确定计算对象集合的阶段,这一阶段与HITS算法基本相同;第二个阶段是链接关系传播过程,在这一阶段则采纳了“随机游走模型”。1.确
2、定计算对象集合 PageRank的计算对象是互联网所有网页,SALSA算法与此不同,在本阶段,其与HITS算法思路大致相同,也是先得到“扩充网页集合”,之后将网页关系转换为二分图形式。 扩充网页集合 SALSA算法在接收到用户查询请求后,利用现有搜索引擎或者检索系统,获得一批与用户查询在内容上高度相关的网页,以此作为“根集”。并在此基础上,将与“根集”内网页有直接链接关系的网页纳入,形成“扩充网页集合”(参考图6.4.3-1)。之后会在“扩充网页集合”内根据一定链接分析方法获得最终搜索结果排名。 转换为无向二分图 在获得了“扩充网页集合”之
3、后,SALSA根据集合内的网页链接关系,将网页集合转换为一个二分图。即将网页划分到两个子集合中,一个子集合是Hub集合,另外一个子集合是Authority集合。划分网页节点属于哪个集合,则根据如下规则:如果一个网页包含出链,这些出链指向“扩充网页集合”内其它节点,则这个网页可被归入Hub集合;如果一个网页包含“扩充网页集合”内其它节点指向的入链,则可被归入Authority集合。 由以上规则可以看出,如果某个网页同时包含入链和出链,则可以同时归入两个集合。同时,Hub集合内网页的出链组成了二分图内的边,根据以上法则,将“扩充网页集合”转换为二分图。 图6-1
4、5和图6-16给出了一个示例,说明了这个转换过程。假设“扩充网页集合”如图6-15所示,由6个网页构成,其链接关系如图所示,同时为便于说明,每个网页给予一个唯一编号。图6-16则是将图6-15中的网页集合转换为二分图的结果。以网页6为例,因为其有出链指向网页节点3和网页节点5,所以可以放入Hub集合,也因为编号为1、3、10的网页节点有链接指向网页节点6,所以也可以放入Authority集合中。网页节点6的两个出链保留,作为二分图的边, 图6-15扩充网页集合示例 但是这里需要注意的是,在转换为二分
5、图后,原先的有向边不再保留方向,转换为无向边,而HITS算法仍然保留为有向边,这点与SALSA略有不同。 图6-16 二分图 到这一步骤为止,除了SALSA将“扩充网页集合”转换为无向二分图,而HITS仍然是有向二分图外,其它步骤和流程,SALSA算法与HITS算法完全相同,正因此,SALSA保证了是与用户查询相关的链接分析算法。2.链接关系传播 在链接关系传播阶段,SALSA放弃了HITS算法的Hub节点和Authority节点相互增强的假设,转而采纳PageRank的“随机游走
6、模型”。链接关系传播概念模型 如图6-16所示,假设存在某个浏览者,从某个子集合中随机选择一个节点出发(为方便说明,图中所示为从Hub子集的节点1出发,实际计算往往是从Authority子集出发),如果节点包含多条边,则以相等概率随机选择一条边,从Hub子集跳跃到Authority集合内节点,图中所示为由节点1转移到节点3,之后从Authority子集再次跳回Hub子集,即由节点3跳到节点6。如此不断在两个子集之间转移,形成了SALSA自身的链接关系传播模式。 尽管看上去与PageRank的链接传播模式不同,其实两者是一样的,关键点在于:其从某个节点跳跃到
7、另外一个节点的时候,如果包含多个可供选择的链接,则以等概率随机选择一条路径,即在权值传播过程中,权值是被所有链接平均分配的。而HITS算法不同,HITS算法属于权值广播模式,即将节点本身的权值完全传播给有链接指向的节点,并不根据链接多少进行分配。 SALSA的上述权值传播模型与HITS模型关注重点不同,HITS模型关注的是Hub和Authority之间的节点相互增强关系,而SALSA实际上关注的是Hub-Hub以及Authority-Authority之间的节点关系,而另外一个子集合节点只是充当中转桥梁的作用。所以,上述权值传播模型可以
此文档下载收益归作者所有