欢迎来到天天文库
浏览记录
ID:31805056
大小:132.50 KB
页数:4页
时间:2019-01-18
《5.8三元一次方程组例题与讲解.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、8 三元一次方程组1.三元一次方程及三元一次方程组(1)三元一次方程:含有三个未知数,并且含未知数的项的次数都是1的方程叫做三元一次方程.(2)三元一次方程组:①定义:含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫三元一次方程组.如:等都是三元一次方程组.②拓展理解:a.构成三元一次方程组中的每一个方程都必须是一次方程;b.三元一次方程组中的每个方程不一定都含有三个未知数,但方程组中一定要有三个未知数.【例1】下列方程组中是三元一次方程组的是( ).A.B
2、.C.D.解析:A,B选项中有的方程不是三元一次方程,C中含有四个未知数,只有D符合三元一次概念内涵,故选D.答案:D2.三元一次方程组的解(1)三元一次方程的解:使三元一次方程左右两边相等的三个未知数的值,叫做三元一次方程的解.和二元一次方程一样,一个三元一次方程也有无数个解.(2)三元一次方程组的解:组成三元一次方程组的三个方程的公共解,叫做三元一次方程组的解.它也是三个数.(3)检验方法:同二元一次方程和二元一次方程组的检验方法一样,代入检验,左、右两边相等即是方程的解.释疑点检验三元一次方程组的解
3、三元一次方程组的解是三个数,将这三个数代入每一个方程检验,只有这些数满足方程组中的每一个方程,这些数才是这个方程组的解.【例2】判断是不是方程组的解.答:__________(填是或不是).解析:把代入方程组的三个方程中检验,能使三个方程的左右两边都相等,所以是方程组的解.答案:是3.三元一次方程组的解法(1)解法思想:解三元一次方程组的基本思路是消元,其方法有代入消元法和加减消元法两种,通过消元将三元一次方程组转化为二元一次方程组或一元一次方程.(2)步骤:①观察方程组中每个方程的特点,确定消去的未知数
4、;②利用加减消元法或代入消元法,消去一个未知数,得到二元一次方程组;③解二元一次方程组,求出两个未知数的值;④将所得的两个未知数的值代入原三元一次方程组中的某个方程,求出第三个未知数的值;⑤写出三元一次方程组的解.(3)注意点:①三元一次方程组的解法多种多样,只要逐步消元,解出每一个未知数即可;②解三元一次方程组时,每一个方程都至少要用到一次,否则解出的结果也不正确.【例3】解方程组 分析:观察方程组中每个方程的特征可知,方程③不含有字母z,而①,②中的未知数z的系数成倍数关系,故可用加减消元法消去字母z
5、,然后将所得的方程与③组合成二元一次方程组,求这个方程组的解,即可得到原方程组的解.解:①×2+②,得5x+8y=7,④解③,④组成的方程组解这个方程组,得把x=3,y=-1代入①,得z=1,所以原方程组的解为4.运用三元一次方程组解实际问题(1)方法步骤:①审题:弄清题意及题目中的数量关系;②设:设三个未知数;③列:找出实际问题中的已知数和未知数,分析它们之间的数量关系,用式子表示,列出三个方程,组成三元一次方程组;④解:解这个方程组,并检验解是否符合实际;⑤答:回答说明实际问题的答案.析规律列三元一次
6、方程组同二元一次方程组的实际应用相类似,运用三元一次方程组解决实际问题要设三个未知数,寻找三个等量关系,列出三个一次方程,组成三元一次方程组.【例4】某个三位数是它各位数字和的27倍,已知百位数字与个位数字之和比十位数字大1,再把这个三位数的百位数字与个位数字交换位置,得到一个新的三位数,新三位数比原三位数大99,求原来的三位数.解:设百位数字为a、十位数字为b,个位数字为c,则这个三位数为100a+10b+c,由题意,得化简,得解这个方程组,得答:原来的三位数是243.5.三元一次方程组的解法技巧解三元
7、一次方程组的基本思路是消元,即化三元为二元,从而转化为二元一次方程组求解,在这里关键是消元,若能根据题目的特点,灵活地进行消元,则可把方程组解得又准确又快捷,下面介绍几种常见的消元策略供参考.(1)先消系数最简单的未知数,这样可以减少运算量,简化过程.如:中,y的系数较简单,先消y简单.(2)先消某个方程中缺少的未知数.若方程组中某个方程缺少某个元,把另外两个方程结合,消去这个元,转化为二元一次方程求解.如:因为方程①中缺少y,所以由②,③组合先消去y比较简单.(3)先消去系数的绝对值相等(或成倍数关系)
8、的未知数,如:三个方程中y的系数成倍数关系,因此先消去y比较简单.(4)整体代入消元,如:将方程③左边变形为(x+y+z)+(x-y)-y=18,作整体代入便可消元求解.(5)整体加减消元:如:在三个方程中,根据未知数x,z的系数特点,可用②+③-①整体加减消元法来解得y的值.再逐步求解.【例5-1】解方程组分析:因为方程①中缺少未知数y项,故而可由②,③组合先消去y,再求解.解:②×3+③,得11x+10z=35,④解由①,
此文档下载收益归作者所有