欢迎来到天天文库
浏览记录
ID:31760460
大小:56.00 KB
页数:3页
时间:2019-01-17
《小学数学教学中如何培养学生的模型思想》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、小学数学教学中如何培养学生的模型思想丁维红山东省青岛市黄岛区实验小学266400《义务教育课程标准》指出:“模型思想的建立是学牛体会和理解数学与外部世界联系的基木途径、建立和求解模型可以提高学习数学的兴趣和应用意识。”由此可见,模型思想是数学教学必须渗透的思想方法之一,而且与传统数学不同的是,新课改下的数学建模过程必须让学牛积极参与,也就是说它是在学牛自主理解、建构基础上的模型,而不是牛硬地塞给学牛的公式、法则等。让学牛在小学阶段积累一定的数学模型思想,并逐步体会数学建模过程是数学教学的核心目标之一,是学牛数学素养形成的重要体现。下面我结合概
2、念课教学实践,谈一谈培养学牛模型思想的几点做法。一、抓住联系,建构模型1.立足牛活与数学的联系,搭建牛活原型到数学模型的桥梁。数学概念比较抽象,而小学牛,特别是低年级小学牛,由于年龄、知识和牛活的局限,其思维主要以形象思维为主。认识一个事物、理解一个数学道理,主要是凭借事物的具体形象。因此,教师在数学概念教学的过程中,要尽量从学生日常生活中所熟悉的事物入手,善于为学牛创造条件,让学牛沿着观察、思维、理解、表达的过程,由感性到理性的过程,由具体到抽象的过程去掌握概念。这样,学牛学起来就有兴趣,思维就活跃,就乐于探究数学问题。在教学《圆柱和圆锥的
3、认识》一课时,我先出示许多圆柱、圆锥形状的冰激凌包装盒,这些学牛都很感兴趣。这时我引导学生观察冰淇淋盒的形状,学牛很快发现冰淇淋盒的形状有圆柱形,也有圆锥形。接着我引导学生想象:把这些盒子的形状画下来是什么样子?学牛的想象非常丰富,我没有给出结论,而是用电脑演示由冰淇淋盒抽象出圆柱、圆锥的几何图形。这样教学很形象,学牛很容易懂。这样由物到形,学生脑海中建立起圆柱圆锥的直观模型。接着引导学牛根据几何图形寻找牛活中的圆柱和圆锥。这样由形再回到物,使建立起的肓观模型有了足够的支撑。2•把握数学知识的内在联系,实现数学模型的自主建构(1)横向联系,在
4、二维世界构建模型。在教《圆的认识》一课吋,学生在感受极限和集合思想的同时建立起了圆的直观模型后,我引导学生横向对比:圆和前面学过的其他平面图形有什么不同之处?在探索岀圆的本质特征“一中同长”之后,再一次把圆和其他平面图形进行对比,“其他平面图形也有一中同长的吗”,再度引发学生的想象和思考:正三角形只有3条一中同长的线段、正四边形有4条、正五边形有5条…,而圆有无数条。通过圆和其他平面图形的两次横向对比,在联系中找区别,学生不仅明确了圆的外在特征,而且理清了圆的本质属性。(2)纵向联系,在三维空间建构模型。如在教学《圆柱和圆锥的认识》一课时,引
5、领学生从直观感知到旋转剖析:长方形上面一条边变短,变成梯形,绕竖直边所在直线旋转会形成什么形体呢?上面一条边继续缩短,变成直角三角形,旋转后会形成什么形体呢?这样从旋转的角度由圆柱过渡到圆锥,建立起圆柱和圆锥的本质联系,使模型的本质属性更加突出。探究完圆柱和圆锥的特征后,引导学生对比:他们有什么相同点?有什么不同点?通过对底面、侧面、高的对比,以及对旋转形成过程的对比,异中求同,同中求异,模型之间的联系更紧密,学生会对模型的理解全面而深刻。二、把握本质,剖析模型数学的操作活动能够让学生的多种感官参与学习,通过看得见、摸得着的学具和动手“做”,
6、将几何图形的特征直观化、具体化,使枯燥的特征变成丰富的直接经验和感性体验,有助于学生把握概念本质,完善认知结构。例《圆柱和圆锥的认识》一课:“圆柱和圆锥有哪些特征?”引领学生从直观感知圆柱圆锥的特征,到通过旋转深入探究圆柱圆锥的特征,由浅入深、由表及里,进而从感性到理性建立起圆柱和圆锥的模型。首先借助操作活动,使学生多种感官充分参与。先通过看一看、摸-•摸发现圆柱两个底面都是圆形,人小一样,侧面是曲面;再量一量、比一比验证两个底面一样大。通过动手操作,将圆柱的特征直观化、具体化,在操作中积累丰富的感性体验。接下来引导学生想象将圆柱竖直剖开的切
7、面,这个长方形绕一条边旋转会形成什么形体呢?长方形旋转的三条边分别形成了圆柱的哪一部分?不动手你还能证明圆柱两个底面一样大吗?这样从外到内,由果询因,使学生从感性的认识上升到理性认识。真正的数学是研究客观世界在数与形方面的本质属性的,这样从直观操作到深入探究,从操作验证到逻辑推理,教学更具有“数学味”,实验得到的结论更完善、更可信,建立起来的数学模型更清晰、更准确。三、学以致用,完善模型课堂上引领学生经历由具体到抽象的过程提炼构建起数学模型,并不是认识活动的终结,还要组织学生从抽象的数学模型还原为具体可感的数学现实中,才能使已经构建的数学模型
8、在抽象向具体冋归的过程中不断得以扩充、提升。如《圆的认识》一课:在学习了圆规画圆之后,引导学生思考:不用圆规还可以怎样画圆呢?怎样在操场上画一个大圆?学生利用材料,
此文档下载收益归作者所有