欢迎来到天天文库
浏览记录
ID:31728747
大小:66.00 KB
页数:3页
时间:2019-01-17
《17.2 实际问题与反比例函数(2).doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、17.2实际问题与反比例函数(2)一、教学目标1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,进一步提高学生用函数观点解决问题的能力,体会和认识反比例函数这一数学模型二、重点、难点1.重点:利用反比例函数的知识分析、解决实际问题2.难点:分析实际问题中的数量关系,正确写出函数解析式,解决实际问题三、例题的意图分析教材第58页的例3和例4都需要用到物理知识,教材在例题前已给出了相关的基本公式,其中的数量关系具有反比例关系,通过对这两个问题的分析和解决,不但能复习巩固反比例函数的有关知识,还能培养学生应用数学的意识补充例题是一道综合题
2、,有一定难度,需要学生有较强的识图、分析和归纳等方面的能力,此题既有一次函数的知识,又有反比例函数的知识,能进一步深化学生对一次函数和反比例函数知识的理解和掌握,体会数形结合思想的重要作用,同时提高学生灵活运用函数观点去分析和解决实际问题的能力四、课堂引入1.小明家新买了几桶墙面漆,准备重新粉刷墙壁,请问如何打开这些未开封的墙面漆桶呢?其原理是什么?2.台灯的亮度、电风扇的转速都可以调节,你能说出其中的道理吗?五、例习题分析例3.见教材第58页分析:题中已知阻力与阻力臂不变,即阻力与阻力臂的积为定值,由“杠杆定律”知变量动力与动力臂成反比关系,写
3、出函数关系式,得到函数动力F是自变量动力臂的反比例函数,当=1.5时,代入解析式中求F的值;(2)问要利用反比例函数的性质,越大F越小,先求出当F=200时,其相应的值的大小,从而得出结果。例4.见教材第59页分析:根据物理公式PR=U2,当电压U一定时,输出功率P是电阻R的反比例函数,则,(2)问中是已知自变量R的取值范围,即110≤R≤220,求函数P的取值范围,根据反比例函数的性质,电阻越大则功率越小,得220≤P≤440例1.(补充)为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与
4、时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为,自变量x的取值范为;药物燃烧后,y关于x的函数关系式为.(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过______分钟后,员工才能回到办公室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?分析:(1)药物
5、燃烧时,由图象可知函数y是x的正比例函数,设,将点(8,6)代人解析式,求得,自变量0<x≤8;药物燃烧后,由图象看出y是x的反比例函数,设,用待定系数法求得(2)燃烧时,药含量逐渐增加,燃烧后,药含量逐渐减少,因此,只能在燃烧后的某一时间进入办公室,先将药含量y=1.6代入,求出x=30,根据反比例函数的图象与性质知药含量y随时间x的增大而减小,求得时间至少要30分钟(3)药物燃烧过程中,药含量逐渐增加,当y=3时,代入中,得x=4,即当药物燃烧4分钟时,药含量达到3毫克;药物燃烧后,药含量由最高6毫克逐渐减少,其间还能达到3毫克,所以当y=3
6、时,代入,得x=16,持续时间为16-4=12>10,因此消毒有效六、随堂练习1.某厂现有800吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是()(A)(x>0)(B)(x≥0)(C)y=300x(x≥0)(D)y=300x(x>0)2.已知甲、乙两地相s(千米),汽车从甲地匀速行驶到达乙地,如果汽车每小时耗油量为a(升),那么从甲地到乙地汽车的总耗油量y(升)与汽车的行驶速度v(千米/时)的函数图象大致是()3.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识,一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积
7、)S(mm2)的反比例函数,其图象如图所示:(1)写出y与S的函数关系式;(2)求当面条粗1.6mm2时,面条的总长度是多少米?七.课后练习一场暴雨过后,一洼地存雨水20米3,如果将雨水全部排完需t分钟,排水量为a米3/分,且排水时间为5~10分钟(1)试写出t与a的函数关系式,并指出a的取值范围;(2)请画出函数图象(3)根据图象回答:当排水量为3米3/分时,排水的时间需要多长?课后反思:
此文档下载收益归作者所有