欢迎来到天天文库
浏览记录
ID:31627361
大小:748.00 KB
页数:13页
时间:2019-01-16
《指数与指数幂地运算》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实用标准文案指数与指数幂的运算【学习目标】1.理解分数指数的概念,掌握有理指数幂的运算性质(1)理解n次方根,n次根式的概念及其性质,能根据性质进行相应的根式计算;(2)能认识到分数指数是指数概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数指数幂的互化;(3)能利用有理指数运算性质简化根式运算.2.掌握无理指数幂的概念,将指数的取值范围推广到实数集;3.通过指数范围的扩大,我们要能理解运算的本质,认识到知识之间的联系和转化,认识到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力;4.通过对根式与分
2、数指数幂的关系的认识,能学会透过表面去认清事物的本质.【要点梳理】要点一、整数指数幂的概念及运算性质1.整数指数幂的概念2.运算法则(1);(2);(3);(4).要点二、根式的概念和运算法则1.n次方根的定义:若xn=y(n∈N*,n>1,y∈R),则x称为y的n次方根.n为奇数时,正数y的奇次方根有一个,是正数,记为;负数y的奇次方根有一个,是负数,记为;零的奇次方根为零,记为;n为偶数时,正数y的偶次方根有两个,记为;负数没有偶次方根;零的偶次方根为零,记为.2.两个等式(1)当且时,;(2)精彩文档实用标准文案要点诠释:①要注意
3、上述等式在形式上的联系与区别;②计算根式的结果关键取决于根指数的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成的形式,这样能避免出现错误.要点三、分数指数幂的概念和运算法则为避免讨论,我们约定a>0,n,mN*,且为既约分数,分数指数幂可如下定义:要点四、有理数指数幂的运算1.有理数指数幂的运算性质(1)(2)(3)当a>0,p为无理数时,ap是一个确定的实数,上述有理数指数幂的运算性质仍适用.要点诠释:(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;(2)根式运算中常出现乘方与开方并存,要注意两者
4、的顺序何时可以交换、何时不能交换.如;(3)幂指数不能随便约分.如.2.指数幂的一般运算步骤有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.在化简运算中,也要注意公式:a2-b2=(a-b)(a+b),(a±b)2=a2±2ab+b2,(a±b)3=a3±3a2b+3ab2±b3,a3-b3=(a-b)(a2+ab+b2),a3+b3=(a+b)(a2-ab+b2)的运用,能够简化运算.【典
5、型例题】类型一、根式例1.求下列各式的值:(1).精彩文档实用标准文案【答案】-3;;;【解析】熟练掌握基本根式的运算,特别注意运算结果的符号.(1);(2);(3);(4)【总结升华】(1)求偶次方根应注意,正数的偶次方根有两个,例如,4的平方根是,但不是.(2)根式运算中,经常会遇到开方与乘方两种运算并存的情况,应注意两者运算顺序是否可换,何时可换.举一反三:【变式1】计算下列各式的值:(1);(2);(3);(4).【答案】(1)-2;(2)3;(3);(4).例2.计算:(1);(2).【答案】.【解析】对于(1)需把各项被开方
6、数变为完全平方形式,然后再利用根式运算性质求解.对于(2),则应分子、分母同乘以分母的有理化因式.(1)=+-==
7、
8、+
9、
10、-
11、
12、精彩文档实用标准文案=+-()=2(2)===【总结升华】对于多重根式的化简,一般是设法将被开方数化成完全次方,再解答,或者用整体思想来解题.化简分母含有根式的式子时,将分子、分母同乘以分母的有理化因式即可,如本例(2)中,的分子、分母中同乘以.举一反三:【变式1】化简:(1);(2)【答案】(1);(2)类型二、指数运算、化简、求值例3.用分数指数幂形式表示下列各式(式中):(1);(2);(3);(4).
13、【答案】;;;【解析】先将根式写成分数指数幂的形式,再利用幂的运算性质化简即可.(1)(2);(3);(4)解法一:从里向外化为分数指数幂==精彩文档实用标准文案===解法二:从外向里化为分数指数幂.=====【总结升华】此类问题应熟练应用.当所求根式含有多重根号时,要搞清被开方数,由里向外或由外向里,用分数指数幂写出,然后再用性质进行化简.举一反三:■高清课程:指数与指数运算例1【变式1】把下列根式用指数形式表示出来,并化简(1);【答案】(1);(2).【变式2】把下列根式化成分数指数幂:(1);(2);(3);(4).【答案】;;
14、;【解析】(1)=;(2);(3);(4)=精彩文档实用标准文案=.例4.计算:(1);(2)(3).【答案】3;0;2【解析】(1)原式=;(2)原式=;(3)原式=-5+6+4--(3-)=2;注意:(
此文档下载收益归作者所有