欢迎来到天天文库
浏览记录
ID:31520864
大小:1.80 MB
页数:24页
时间:2019-01-12
《超越hadoop的大数据技术:用spark 和shark进行基于内存的实时大数据分析》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、CCFYOCSEFShanghaiBigDataBeyondHadoopReal-TimeAnalyticalProcessing(RTAP)UsingSparkandSharkJasonDaiEngineeringDirector&PrincipalEngineerIntelSoftwareandServicesGroupAgendaBigDatabeyondHadoopIntroductiontoSparkandSharkCasestudy:real-timeanalyticalprocessing(RTAP)BigDatabeyondHadoop
2、BigDtatoday•TheisintheroomBigDatabeyondHadoop•Real-timeanalyticalprocessing(RTAP)–Discoverandexploredataiterativelyandinteractivelyforreal-timeinsights•Advancedmachineleaninganddatamining(MLDM)–Graph-parallelpredictiveanalytics(non-SQL)•Distributedin-memoryanalytics–Exploitavail
3、ablemainmemoryintheentireclusterfor>100xspeedupRTAP:Real-TimeAnalyticalProcessingReal-TimeAnalyticalProcessing(RTAP)•Dataingested&processedinastreamingfashion•Real-timedataqueriedandpresentedinanonlinefashion•Real-timeandhistorydatacombinedandminedinteractively•PredominantlyRAM-
4、basedprocessingAdvanced,Graph-ParallelMLDMAdvancedmachinelearninganddatamining(MLDM)•Informationretrieval(e.g.,pagerank)•Recommendationengine(e.g.,ALS)•Socialnetworkanalysis(e.g.,clustering)•Naturallanguageprocessing(e.g.,NER)•…Graphparallelcomputations•AsparsegraphG(V,E)•Averte
5、xprogramPrunsoneachvertexinparallel&repeatedly•VerticesinteractalongedgesAdvanced,Graph-ParallelMLDMMLDMData-ParallelGraph-ParallelMapReducePregel/GraphLab•Independentdata•(Sparse)datadependence•Single-pass•Iterative•(Bulk)synchronous•Dynamicallyprioritized10x~100xspeedup•Exploi
6、tgraphstructuretoreducecomputation&communications•Efficientgraphpartitiontobalancecomputation/storage,andminimizenetworktransferDistributedIn-MemoryAnalyticsMemoryisking•64GB/nodemainstream,192GBnotuncommon,fastcheapNVRAMonthehorizonHadoopinherentlydisk-basedarchitecture•Fulltab
7、lescaninHivefromRAMonly~40%speedup•Readallthemain-memoryDBliteraturesDistributedin-memoryanalytics•Efficientcomputeintegratedwithcolumnarcompression•ReliableRAM-orientedstoragelayeracrossthecluster•Holisticallocationofmemoryinthecluster–Inputs,intermediateresults,temporarydata,
8、computationstate,etc.AgendaBigDatabeyondHadoopI
此文档下载收益归作者所有