欢迎来到天天文库
浏览记录
ID:31450483
大小:105.50 KB
页数:6页
时间:2019-01-10
《浅谈数学教学中新课导入的技巧与方法》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、浅谈数学教学中新课导入的技巧与方法 由于数学基础的薄弱以及多方面的原因,很多学生对数学的兴趣正逐渐地减淡。众所周知,兴趣是做好任何一件事情的内在动力,如何提高学生学习数学的兴趣是教师在数学课堂上首先要考虑的问题。为此,新课的导入技巧和方法就显得尤为重要。一个好的导入,能引起学生的注意,激发学生的学习动机、兴趣,使学生明确学习目的。因此,根据数学课程的特点,结合多年的教学实践,本文总结出适合该课程的几个新课导入方法。 一、引言 学习兴趣是学生学习积极性中最现实、最活跃的心理成分,直接影响着学习的效果,在学习活动中起着十
2、分重要的作用。然而,目前很多学生,由于其本身的数学基础相对薄弱,再加上数学教学本身严谨的推理思维性质,往往给学生造成一种枯燥乏味的错误认识,许多学生就是在这种情况下逐渐失去了对数学的兴趣。如果能让抽象的数学不再枯燥,让学生充分感受到数学的魅力,真正认识到数学并非神话,她就植根在我们的周围与生活中,真切体会到数学是丰富的,生动的也是有趣的,学生就会对数学产生浓厚的学习兴趣,就不会把学习数学当作一种负担,反而会当作一种求知上的享受。然而,兴趣不是天生的,而是在后天的生活环境和教育的影响下产生和发展起来的。因此,在数学的教学过程
3、中,作为教学技能之一的新课导入技能就显得尤为重要。课堂教学的导入,犹如戏剧中的“6序幕”,起着渲染气氛、酝酿情绪、集中注意力、渗透主题和带入情境的作用。精心设计的导入能抓住学生的心弦,立疑激趣,能促成学生的情绪高涨,步入智力振奋的状态,有助于学生获得良好的学习成果。 二、新课导入技能与方法 众所周知,兴趣是干好任何一件事情的内因和原动力,如何提高学生学习数学的兴趣也是教师在进行教法改革时必须要考虑到的一件事情。新课导入技能就是数学教学技能之一。俗话说:“良好的开头是成功的一半”,这就告诉我们,做任何事情都要注重起始环节
4、,课堂教学也不例外。特别是数学的教学过程中,教师要尤为重视新课的导入方法。 1、新课导入原则。 新课导入技能,是指引起学生注意,激发学习动机、兴趣,明确学习目的和建立起新旧知识之间联系的教学活动方式的特征。一般来说,导入技能应符合以下基本要求:(1)导入的目的性与针对性要强。要针对教材内容和学生实际,采用适当的导入方法。在导入一节新课之前,所举例子要尽量和实际生活相联系,这样就能激发学生的学习兴趣,提高他们对所学知识的重视程度。这样,学生就能认识到这个知识点跟现实生活的联系,体会到数学知识的重要性。(2)导入要具有逻辑
5、性、连贯性。数学知识之间有较强的递进性和系统性,因此,新课的导入要从新旧知识、前后知识之间的内在联系、知识迁移、逻辑发展,自然地、连贯地、合乎逻辑地从已有的知识导出新的知识,造成一种“知识从突”6,让学生在迫切要求下,来开始一种新知识的学习。(3)导入要具有直观性和启发性。由于很多学生,其数学基础性对薄弱,因此,在导入新课的时候,尽量以生动、直观、形象、具体的事物,引入新知识、新概念,使导入发人深思,引人入胜。这样,学生就会真正认识到数学并非神话,它就存在于我们的周围与生活中。(4)导入要有趣味,有一定的数学美感魅力。数学
6、由于本身严谨的推理思维性质,往往给学生造成一种枯燥乏味的错误认识,许多学生就是在这种情况下逐渐失去了对数学的兴趣。因此,导入要做到引人注目,饶有风趣,造成悬念,启发思维,让学生充分感受到数学的魅力,真切体会到数学是丰富的、生动的、也是有趣的,学生就会对数学产生浓厚的学习兴趣,就不会把学习数学当作一种负担,反而会当作一种求知上的享受。这就要求教师挖掘教材的科学性、思想性和数学美,也依赖于教师生动的语言和炽热的感情。新颖的引言,巧妙的导语,生动的开头,是使学生迅速进入学习意境的重要手段。 2、新课导入技能与方法。 根据新课
7、导入技能的基本要求,结合学生实际情况和课程的具体内容,我们总结出几种导入新课的方法。 (1)用数学史导入。数学教材是在科学性与教育要求相结合原则的指导下,经过反复锤炼编写而成的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素。因此,学生在学习的时候,不仅6觉得数学课抽象、枯燥,而且难以获得数学的原貌和全景,同时还有可能忽视那些被历史淘汰掉的、但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径
8、就是增加数学史的学习。因此,在教学过程中,采用相关的数学史来导入新课,就能让数学活起来,这样不仅有助于激发学生的学习兴趣,而且有助于学生对数学概念、方法和原理的理解与认识的深化。如牛顿、莱布尼兹与微积分、函数概念的历史、机会游戏与概率,韩信点兵与线性规划,哥尼斯堡七桥问题、罗素悖论等。 (2)旧知识导
此文档下载收益归作者所有