中考数学一轮复习分式方程及应用学案无答案

中考数学一轮复习分式方程及应用学案无答案

ID:31410864

大小:281.00 KB

页数:4页

时间:2019-01-09

中考数学一轮复习分式方程及应用学案无答案_第1页
中考数学一轮复习分式方程及应用学案无答案_第2页
中考数学一轮复习分式方程及应用学案无答案_第3页
中考数学一轮复习分式方程及应用学案无答案_第4页
资源描述:

《中考数学一轮复习分式方程及应用学案无答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、到乌蒙山区的昭通;从甘肃中部的定西,到内蒙古边陲的阿尔山,看真贫、知真贫,真扶贫、扶真贫,成为“花的精力最多”的事;“扶贫先扶志”“扶贫必扶智”“实施精准扶贫”分式方程及应用章节第二章课题分式方程及应用课型10复习课教法讲练结合教学目标(知识、能力、教育)1.使学生进一步掌握解分式方程的基本思想、方法、步骤,并能熟练运用各种技巧解方程,会检验分式方程的根。2.能解决一些与分式方程有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识.教学重点解分式方程的基本思想和方法。教学难点解决分式方程有关的实际问题。教学媒体学案教学过

2、程一:【课前预习】(一):【知识梳理】1.分式方程:分母中含有的方程叫做分式方程.2.分式方程的解法:解分式方程的关键是(即方程两边都乘以最简公分母),将分式方程转化为整式方程;3.分式方程的增根问题:⑴增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根的增根;⑵验根:因为解分式方程可能出现增根,所以解分式方程必须验根。验根的方法是将所求的根代人或,若的值为零或的值为零,则该根就是增根。4

3、.分式方程的应用:列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.5.通过解分式方程初步体验“转化”的数学思想方法,并能观察分析所给的各个特殊分式或分式方程,灵活应用不同的解法,特别是技巧性的解法解决问题。6.分式方程的解法有和。(二):【课前练习】新的贫困人口还会出现,因灾、因病、因学返贫情况还会时有发生;五

4、是经济下行压力较大,贫困人口就业和增收难度增大,一些农民因丧失工作重新陷入贫困到乌蒙山区的昭通;从甘肃中部的定西,到内蒙古边陲的阿尔山,看真贫、知真贫,真扶贫、扶真贫,成为“花的精力最多”的事;“扶贫先扶志”“扶贫必扶智”“实施精准扶贫”1.把分式方程的两边同时乘以(x-2),约去分母,得()A.1-(1-x)=1B.1+(1-x)=1C.1-(1-x)=x-2D.1+(1-x)=x-22.方程的根是()A.-2B.C.-2,D.-2,13.当=_____时,方程的根为4.如果,则A=____B=________.5.若方程有增

5、根,则增根为_____,a=________.二:【经典考题剖析】1.解下列分式方程:分析:(1)用去分母法;(2)(3)(4)题用化整法;(5)(6)题用换元法;分别设,,解后勿忘检验。2.解方程组:分析:此题不宜去分母,可设=A,=B得:,用根与系数的关系可解出A、B,再求,解出后仍需要检验。3.若关于x的分式方程有增根,求m的值。4.某市今年1月10起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份的水费是18元,而今年5月份的水费是36元,已知小明家今年5月份的用水量比去年12月份多6m3,求该市今年居民用水

6、的价格.解:设市去年居民用水的价格为x元/m3,则今年用水价格为(1+25%)x元/m3.根据题意,得经检验,x=1.8是原方程的解.所以.新的贫困人口还会出现,因灾、因病、因学返贫情况还会时有发生;五是经济下行压力较大,贫困人口就业和增收难度增大,一些农民因丧失工作重新陷入贫困到乌蒙山区的昭通;从甘肃中部的定西,到内蒙古边陲的阿尔山,看真贫、知真贫,真扶贫、扶真贫,成为“花的精力最多”的事;“扶贫先扶志”“扶贫必扶智”“实施精准扶贫”答:该市今年居民用水的价格为2.25x元/m3.点拨:分式方程应注意验根.本题是一道和收水费有

7、关的实际问题.解决本题的关键是根据题意找到相等关系:今年5月份的用水量一去年12月份的用量=6m3.5.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售每吨利润涨至7500元。当地一公司收获这种蔬菜140吨,其加工厂生产能力是:如果进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨。但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天内将这蔬菜全部销售或加工完毕,为此公司初定了三种可行方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬

8、菜进行精加工,没来得及加工的蔬菜在市场上直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成。你认为哪种方案获利最多?为什么?略解:第一种方案获利630000元;第二种方案获利725000元;第三种方案先设将吨蔬菜精加工,用时间列方程解得

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。