欢迎来到天天文库
浏览记录
ID:31398546
大小:1.22 MB
页数:21页
时间:2019-01-09
《山西省太原市2018届高三第三次模拟考试理科数学----精校解析Word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、www.ks5u.com太原市2018年高三年级模拟试题(三)理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则()A.B.C.D.【答案】C【解析】详解:解不等式得集合A,B进而求,再求交集即可.分析:集合,,则.故选C.点睛:本题主要考查了集合的运算,属于基础题.2.若,则的值为()A.3B.5C.D.【答案】D【解析】分析:由复数的除法运算得,进而求模即可.详解:由,可得..故选D.点睛:本题主要考查了复数的除法运
2、算及复数模的概念,属于基础题.3.“”是“”恒成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】-21-设成立;反之,,故选A.4.若,则的大小关系为()A.B.C.D.【答案】D【解析】因为,所以..,所以,.综上:.故选D.5.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题设计一个程序框图,执行该程
3、序框图,则输出的等于()A.21B.22C.23D.24【答案】C-21-【解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.6.已知展开式中的系数为0,则正实数()A.1B.C.D.2【答案】B【解析】分析:由二项展开的通项公式得的展开式的通项公式,再与相乘得项,令其系数等于0可得解.详解:的展开式的通项公式为:.令得:;令得:.展开式中为:.由题意知,解得(舍)或.故选B.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项
4、,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.7.已知数列的前项和,若,则()A.B.C.D.【答案】B【解析】详解:由,得,数列是从第二项起的等比数列,公比为4,利用即可得解.详解,由,可得.两式相减可得:.即.-21-数列是从第二项起的等比数列,公比为4,又所以.所以.故选B.点睛:给出与的递推关系,求an,常用思路是:一是利用转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先
5、求出Sn与n之间的关系,再求an.8.如图是正四面体的平面展开图,分别是的中点,在这个正四面体中:①与平行;②与为异面直线;③与成60°角;④与垂直.以上四个命题中,正确命题的个数是()A.1B.2C.3D.4【答案】C【解析】分析:正四面体的平面展开图复原为正四面体A(B、C)﹣DEF,①,依题意,MN∥AF,而DE与AF异面,从而可判断DE与MN不平行;②,假设BD与MN共面,可得A、D、E、F四点共面,导出矛盾,从而可否定假设,肯定BD与MN为异面直线;③,依题意知,GH∥AD,MN∥AF,∠
6、DAF=60°,于是可判断GH与MN成60°角;④,连接GF,那么A点在平面DEF的射影肯定在GF上,通过线面垂直得到线线垂直.详解:将正四面体的平面展开图复原为正四面体A(B、C)﹣DEF,如图:-21-对于①,M、N分别为EF、AE的中点,则MN∥AF,而DE与AF异面,故DE与MN不平行,故①错误;对于②,BD与MN为异面直线,正确(假设BD与MN共面,则A、D、E、F四点共面,与ADEF为正四面体矛盾,故假设不成立,故BD与MN异面);对于③,依题意,GH∥AD,MN∥AF,∠DAF=60°
7、,故GH与MN成60°角,故③正确;对于④,连接GF,A点在平面DEF的射影A1在GF上,∴DE⊥平面AGF,DE⊥AF,而AF∥MN,∴DE与MN垂直,故④正确.综上所述,正确命题的序号是②③④,故答案为:②③④.点睛:本题主要考察了空间中的两直线的位置关系,需要一定的空间能力,属于中档题.9.已知抛物线的焦点为,准线为,是上一点,直线与抛物线交于两点,若,则()A.B.8C.16D.【答案】A【解析】分析:利用抛物线性质分析线段比,进而得直线斜率,写出直线的方程,再将直线的方程与抛物线y2=4x
8、的方程组成方程组,消去y得到关于x的二次方程,最后利用根与系数的关系结合抛物线的定义即可求线段MN的长.详解:抛物线C:的焦点为F(1,0),准线为l:x=﹣1,与x轴交于点Q设M(x1,y1),N(x2,y2),M,N到准线的距离分别为dM,dN,由抛物线的定义可知
9、MF
10、=dM=x1+1,
11、NF
12、=dN=x2+1,于是
13、MN
14、=
15、MF
16、+
17、NF
18、=x1+x2+2.∵,∴,即,∴.-21-∴,∴直线AB的斜率为,∵F(1,0),∴直线PF的方程为y=(x﹣1),将y
此文档下载收益归作者所有