欢迎来到天天文库
浏览记录
ID:31374799
大小:110.50 KB
页数:9页
时间:2019-01-09
《磁场转换之谜》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、磁场转换之谜 地球磁场能够保护我们免受太阳辐射的危险。如今地球磁场正在变得越来越不稳定,南北磁极会转换吗? 磁场转换为什么越来越频繁 你可能会认为指南针总是指向北方,但事实上,在遥远的地球历史上,南北磁极已经历过多次转换。地球磁场的存在对于地球生命意义重大,它能够保护地球生物免受太阳辐射的危险。但至今为止的地质证据分析表明,如今地球磁场正在变得越来越不稳定。在遥远的过去,地球南北磁极要比现在稳定得多,每隔500万年出现一次南北磁极大逆转,但是现在,南北磁极的转换正在变得越来越频繁,每隔20万年就会翻转一次。 地球磁场由地核提供动力。地心是一个固体内核,
2、周围是呈流体状的外核,越往中心温度越高,外核中炽热的铁水不断上升,然后冷却下沉。这种对流,加上地球的旋转,就像一个巨大的“发电机”,为地球磁场提供动力。 由于地球中心温度和铁水流动情况的变化,导致南北磁极位置发生变化,这些变化会在岩石上留下痕迹。熔岩冷却时,岩浆中的磁铁矿物质按地磁场的方向被磁化,岩浆冷却并凝固下来后,地磁场的方向和磁极被保留在磁化了的岩石中。因此科学家可以根据熔岩年代以及上面留下的痕迹,推算出历史上各个不同时期磁极的位置。9 科学家发现,在过去1亿年里,地球磁场已发生过大约170次磁极逆转事件,最近一次的地球南北磁极逆转发生在78.1万年前。
3、 磁极逆转是否正在变得越来越频繁?在理论上,这要取决于地核中发生了什么样的变化。 研究人员认为地心内核在缓慢增长,而地心外核则在逐渐变冷凝固,这意味着磁极翻转会更频繁。美国加州大学圣克鲁斯分校的加里?格拉特兹梅尔和他的同事通过模拟实验表明,地心内核越大,对地心外核岩浆流动的阻力就越大,磁场也越不稳定。 但这一点很难证实,因为越是古老岩石上磁场方向的证据越是难以完好保存下来。芬兰赫尔辛基大学的托尼?维科莱恩将从5亿~30亿年历史的岩石样本上获得的一批数据收集在一起。首先,他淘汰了所有不可靠的数据,例如,将有可能导致数据混乱的含有赤铁矿的样本排除在外,一些冷却缓
4、慢的岩石也被排除在外,如花岗岩。 通过这些数据资料,维科莱恩发现,在遥远的过去,地球磁场要比现在稳定得多,磁极逆转的频率要比现在低得多。1亿~15亿年前,地球磁场逆转每隔370万年发生一次,但在更遥远的15亿~29亿年前,地球磁场每隔500万年才翻转一次。 而在较近过去的1.5亿年里,地球磁场每隔60万年翻转一次,在更近些的1千万年至20万年里,地球磁场转换的速度继续加快,每隔20万年至25万年就翻转一次。维科莱恩说:“这些证据表明,地球磁场过去要比现在稳定得多,磁极逆转的频率也要低得多。”9 下一个磁场逆转事件会很快到来吗?这很难说。根据欧洲航天局的卫
5、星群收集到的最新数据显示,地球磁场正以每10年5%的速度在变弱,虽然磁场总是在不断的变化之中,但地球磁场每100年5%的速度发生变化可能更正常一些,因此一些人推测下一次磁极逆转可能正在迫近。 在磁极逆转发生时,地球磁场会大大减弱,甚至消失一段时间,到时会发生什么目前还不十分清楚,但据科学家们推测,有可能极大地影响到电网和通信系统的正常运行。 地心活动与磁场转换 地球深处的地心是一个难以想象的地方。在离地面5000多千米的含铁丰富的地核内,超高温度堪比太阳表面的温度,巨大的压强相当于20头蓝鲸的重量作用在一张邮票上。 正是地心中的这种极端环境生成了地球磁
6、场,也正是有了覆盖整个地球表面的地磁力,我们这颗行星上才有可能孕育出丰富多样的生命形式。当太阳带电粒子偶尔造访地球时,地球磁场可迫使其转变方向,避免地球遭到被狂暴的太阳带电粒子“狂轰滥炸”的厄运。没有强大磁场的这道防线,太阳风暴来临时,地球上所有的生命形式都会被烤干,地球大气层也将会逐渐消失。9 几十年来,科学家们一直在努力探索地球磁场和磁性的秘密。有一个普遍认可的共识:地心外核流动铁水的导热性产生磁场。然而,近几年科学家对地球磁场的研究有了更多新的发现。2012年时有科学家提出,如今地心中的流动铁液的导热性比之前所认为的更强,这意味着早期地球即使有磁场存在,磁
7、力也很弱,但令人困惑的是,古代岩石上的磁极变化记录显示,强大的磁场已经保护了地球几十亿年。 地心中的热传导与热对流 那么,这到底是怎么回事呢?2015年1月,超级计算机模拟提供了一个可能的答案。计算机模拟地心中极端温度和极端压力环境中电子围绕铁原子活动的情况显示,早期地球地心中铁的热传导率极低,足以产生一个强大的磁场,当时,研究人员认为地心神秘之谜可能已经得到解决。但之后研究人员模拟地球地心极端环境的实验让人们怀疑,虽然离真正的答案更近了一些,但地心之谜真的那么容易得到解决吗? 我们知道,热对流就像平时烧水,先是下面的水受热,然后升上去,上面凉的水就会降
8、下来然后受
此文档下载收益归作者所有