奥氏体珠光体铁素体贝氏体马氏体

奥氏体珠光体铁素体贝氏体马氏体

ID:31345055

大小:148.00 KB

页数:10页

时间:2019-01-08

奥氏体珠光体铁素体贝氏体马氏体_第1页
奥氏体珠光体铁素体贝氏体马氏体_第2页
奥氏体珠光体铁素体贝氏体马氏体_第3页
奥氏体珠光体铁素体贝氏体马氏体_第4页
奥氏体珠光体铁素体贝氏体马氏体_第5页
资源描述:

《奥氏体珠光体铁素体贝氏体马氏体》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用标准文案结构奥氏体的面心立方点阵具有多个滑移系,使其容易塑性变形,牛产中利用上述性质进行钢的热变形。又因面心立方点阵是一种最密排的点阵结构,致密度高,所以奥氏体的比热容最小,奥氏体在与其他组织发生相互转变时,会产生体积变化,引起残余内应力和一系列的相变。密排六方、面心立方致密度0.74,体心致密度0.68,性能奥氏体的面心立方结构使其具有良好的塑性、低的屈服强度和硬度。奥氏体中铁原子激活能大,扩散系数小,因此奥氏体钢的热强性好。线膨胀系数大导热性能差奥氏体晶粒度实际生产中习惯用晶粒度来表示奥氏体晶粒大小。奥

2、氏体晶粒通常分为8级标准评定,1级最粗,8级最纫,超过8级以上者称为超细晶粒。晶粒度级别N与晶粒大小的关系为:式中,n为放大100倍的视野中每平方英寸(6.45cm2)所含的平均奥氏体晶粒数目。奥氏体晶粒越细小爪就越大,N也就越大。1.起始晶粒度:起始晶粒度是指在临界温度以上,奥氏体形成刚刚完成,其晶粒边界刚刚相互接触时的品粒大小,取决于奥氏体的形核率N和长大速度G。2.实际晶粒度:实际生产中,各式各样热处理工艺处理后得到的奥氏体晶粒大小。3.本质晶粒度:钢在规定加热条件下奥氏体晶粒长大的倾向性。1-4级为本质

3、细晶粒,5-8为本质粗晶粒。种类颗粒状奥氏体:奥氏体的组织形态与原始组织、加热速度、加热转变的程度有关,一般由多边形等轴晶粒组成,这种形态也称为颗粒状,在晶粒内部经常可以看到相变孪品。针状奥氏体:非平衡态时低碳钢以适当的速度加热到(a十r)两相区可得到针状奥氏体。一般热处理手册上列出的实际临界点数据,多是在30-50度/小时的加热或冷却速度下测定的。奥氏体等温形成动力学曲线时间-温度-奥氏体化图,简称TTA图奥氏体等温形成动力学油线指在一定温度下,奥氏体形成量与等温时间的关系曲线,常用金相法进行测定。将一纽厚度

4、为1—2MM的薄片共析碳钢试样,在盐浴中迅速加热至AC1点以上某一指定温度,保温不同时间后在盐水中急冷至室温,然后制取金相试样进行观察。因加热转变所得的奥氏体在快冷时转变为马氏体,故根据观察到的马氏体量的多少即可了解奥氏体的形成数量。作出各温度下奥氏体形成量与保温时间的关系曲线,即得奥氏体等温形成动力学曲线。精彩文档实用标准文案加热温度,加热速度,保温时间,原始组织,合金成分精彩文档实用标准文案奥氏体化:1.形核奥氏体通常在铁素体与渗碳体界面上通过扩散形成的原因:1.在相界面上形核,容易获得形成奥氏体所需的浓度

5、起伏、结构起伏和能量起伏。首先,由于铁索体的含碳量极低(0.02%以下),渗碳体的含碳量又很高(6.67%),奥氏体的含碳量介于两者之间,在相界面上吸附有碳原于,且含量较高,界面扩散速度又较快,容易形成较大的浓度起伏,使相界面某一微区达到形成奥氏体晶核所需的碳浓度;2.在两相界面处,原子排列不规则,容易满足形核所需的结构起伏;3.界面上能量较高,容易造成能量起伏,以满足形核功的需求;4.在相界面形核阻力小。因为在界面非均匀形核的形核功较低,一方面增加的界面能减少,因为在新界面形成的同时,会使原有界面部分消失;另

6、一方面,增加的应变能减少(因为原子排列不规则的相界更容易容纳一个新相)。这样,形核引起的系统自由能总变化会因阻力项的减少,更容易满足G<0的相变热力学条件。2.长大奥氏体晶粒的长大是通过C原子的扩散实现的。3.残留碳化物的溶解残留碳化物溶解是通过Fe3C中的碳原子向奥氏体中扩散和铁原于向贫碳的渗碳体扩散,渗碳体向奥氏体晶体点阵改组来完成的。4.成分均匀化此公式中参数直接与温度相关。l平衡组织共析钢的奥氏体化奥氏体在片状珠光体中还会沿平行于片层方向长大,此时碳原子有两种扩散途径:①在奥氏体中进行体扩散;②沿着。奥

7、氏体/铁素体相界面进行界面扩散。其中第二种是主要途径,因为沿界面扩散路途较短,且扩散系数大。借助这两种扩散途径,奥氏体沿平行于片层方向的长大速度要比沿垂直于片层方向的长大速度要高。精彩文档实用标准文案综上所述,奥氏体的长大受碳的扩散所控制,奥氏体中的碳浓度差是奥氏体在铁索体和渗碳体相界面上形核的必然结果,它是碳扩散并造成相界面推移的驱动力,相界面推移的结果是Fe3C不断溶解,铁素体相逐渐转变为奥氏体相。l平衡组织非共析钢的奥氏体化亚共析钢与过共析钢的奥氏体形成过程与共析钢基本相同,当加热温度仅超过AC1而低于A

8、C3或ACCM4时,只能使原始组织中的珠光体转变为奥氏体,仍保留一部分先共析铁素体或先共析渗碳体,这种转变称为不完全奥氏体化,是生产上常用的加热工艺。要获得均匀的单相奥氏体,非共析钢的加热温度必须超过AC1或ACcm并保温足够时间,即非共析钢的完全奥氏体化包括两个过程,首光是珠光体的奥氏体化,然后是先共析相的奥氏体化。需要注意的是,过共析钢中的光共析渗碳体的进一步溶解与共析钢转变时的第

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。