欢迎来到天天文库
浏览记录
ID:31327248
大小:498.00 KB
页数:15页
时间:2019-01-08
《spss相关分析案例讲解要点说明》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、word格式精心整理版相关分析一、两个变量的相关分析:Bivariate1.相关系数的含义相关分析是研究变量间密切程度的一种常用统计方法。相关系数是描述相关关系强弱程度和方向的统计量,通常用r表示。①相关系数的取值范围在-1和+1之间,即:–1≤r≤1。②计算结果,若r为正,则表明两变量为正相关;若r为负,则表明两变量为负相关。③相关系数r的数值越接近于1(–1或+1),表示相关系数越强;越接近于0,表示相关系数越弱。如果r=1或–1,则表示两个现象完全直线性相关。如果=0,则表示两个现象完全不相关(不是直线相关)。④,称为微弱相关、,称为低度
2、相关、,称为显著(中度)相关、,称为高度相关⑤r值很小,说明X与Y之间没有线性相关关系,但并不意味着X与Y之间没有其它关系,如很强的非线性关系。⑥直线相关系数一般只适用与测定变量间的线性相关关系,若要衡量非线性相关时,一般应采用相关指数R。2.常用的简单相关系数(1)皮尔逊(Pearson)相关系数皮尔逊相关系数亦称积矩相关系数,1890年由英国统计学家卡尔•皮尔逊提出。定距变量之间的相关关系测量常用Pearson系数法。计算公式如下:(1)(1)式是样本的相关系数。计算皮尔逊相关系数的数据要求:变量都是服从正态分布,相互独立的连续数据;两个变
3、量在散点图上有线性相关趋势;样本容量。(2)斯皮尔曼(Spearman)等级相关系数范文范例学习指导word格式精心整理版Spearman相关系数又称秩相关系数,是用来测度两个定序数据之间的线性相关程度的指标。当两组变量值以等级次序表示时,可以用斯皮尔曼等级相关系数反映变量间的关系密切程度。它是根据数据的秩而不是原始数据来计算相关系数的,其计算过程包括:对连续数据的排秩、对离散数据的排序,利用每对数据等级的差额及差额平方,通过公式计算得到相关系数。其计算公式为:(2)(2)式中,为等级相关系数;为每对数据等级之差;为样本容量。斯皮尔曼等级相关对
4、数据条件的要求没有积差相关系数严格,只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关来进行研究。(3)肯德尔(Kendall)等级相关系数肯德尔(Kendall)等级相关系数是在考虑了结点(秩次相同)的条件下,测度两组定序数据或等级数据线性相关程度的指标。它利用排序数据的秩,通过计算不一致数据对在总数据对中的比例,来反映变量间的线性关系的。其计算公式如下:(3)(3)式中,是肯德尔等级相关系数;是不一致数据对数;为样本容量。计算肯德尔等
5、级相关系数的数据要求与计算斯皮尔曼等级相关系数的数据要求相同。3.相关系数的显著性检验通常,我们用样本相关系数r作为总体相关系数ρ的估计值,而r仅说明样本数据的X与Y的相关程度。有时候,由于样本数据太少或其它偶然因素,使得样本相关系数r值很大,而总体的X与Y并不存在真正的线性关系。因而有必要通过样本资料来对X与Y之间是否存在真正的线性相关进行检验,即检验总体相关系数ρ是否为零(即原假设是:总体中两个变量间的相关系数为0)。范文范例学习指导word格式精心整理版SPSS的相关分析过程给出了该假设成立的概率(输出结果中的Sig.)。样本简单相关系数
6、的检验方法为:当原假设:,时,检验统计量为:(4)当原假设:,时,检验统计量为:(5)式中,为简单相关系数;为观测值个数(或样本容量)。4.背景材料设有10个厂家,序号为1,2,…,10,各厂的投入成本记为,所得产出记为。各厂家的投入和产出如表7-18-1所示,根据这些数据,可以认为投入和产出之间存在相关性吗?表110个厂家的投入产出单位:万元厂家12345678910投入产出20304060204030601030104020402050203030705.操作步骤5-1绘制散点图的步骤(1)选择菜单命令“Graphs”→“LegacyDia
7、logs”→“Scatter/Dot”,打开Scatter/Dot对话框,如图1所示。图1选择散点图窗口(2)选择散点图类型。SPSS提供了五种类型的散点图。范文范例学习指导word格式精心整理版(3)根据所选择的散点图类型,单击“Define”按钮设置散点图。不同类型的散点图的设置略有差别。①简单散点图(SimpleScatter)简单散点图的设置窗口如图2所示。图2简单散点图的设置窗口从对话框左侧的变量列表中指定某个变量为散点图的纵坐标和横坐标,分别选入Y-Axis和X-Axis框中。这两项是必选项。可以把作为分组的变量指定到SetMark
8、ersby框中,根据该变量取值的不同对同一个散点图中的各点标以不同的颜色(或形状)。该项可以省略。把标记变量指定到LabelCasesby框中,表示将
此文档下载收益归作者所有