高考数学一轮复习 第二章 函数导数及其应用 课时达标14 导数与函数的单调性 理

高考数学一轮复习 第二章 函数导数及其应用 课时达标14 导数与函数的单调性 理

ID:31305637

大小:76.50 KB

页数:5页

时间:2019-01-08

高考数学一轮复习 第二章 函数导数及其应用 课时达标14 导数与函数的单调性 理_第1页
高考数学一轮复习 第二章 函数导数及其应用 课时达标14 导数与函数的单调性 理_第2页
高考数学一轮复习 第二章 函数导数及其应用 课时达标14 导数与函数的单调性 理_第3页
高考数学一轮复习 第二章 函数导数及其应用 课时达标14 导数与函数的单调性 理_第4页
高考数学一轮复习 第二章 函数导数及其应用 课时达标14 导数与函数的单调性 理_第5页
资源描述:

《高考数学一轮复习 第二章 函数导数及其应用 课时达标14 导数与函数的单调性 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争2018年高考数学一轮复习第二章函数、导数及其应用课时达标14导数与函数的单调性理[解密考纲]本考点主要考查利用导数研究函数的单调性.高考中导数试题经常和不等式、函数、三角函数、数列等知识相结合,作为中档题或压轴题出现.三种题型均有出现,以解答题为主,难度较大.一、选择题1.(2017·福建福州模拟)函数y=f(x)的图象如图所示,则y=f′(x)的图象可能是(

2、 D )解析:由函数f(x)的图象可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上f′(x)>0,在(0,+∞)上f′(x)<0.选项D满足,故选D.2.(2017·苏中八校联考)函数f(x)=x-lnx的单调递减区间为( A )A.(0,1)B.(0,+∞)C.(1,+∞)D.(-∞,0)∪(1,+∞)解析:函数的定义域是(0,+∞),且f′(x)=1-=,令f′(x)<0,解得00”是“f(x)在R上

3、单调递增”的( A )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:f′(x)=x2+a,当a≥0时,f′(x)≥0恒成立,故“a>0”是“f(x)在R上单调递增”的充分不必要条件.4.函数f(x)对定义域R上的任意x都有f(2-x)=f(x),且当x≠1时,其导函数f′(x)满足xf′(x)>f′(x),若1

4、在全镇范围内营造了全民扫黑除恶的浓厚氛围为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争A.f(2a)f′(x),即(

5、x-1)f′(x)>0,故当x∈(1,+∞)时,函数单调递增,x∈(-∞,1)时,函数单调递减.∵12,∴f(log2a)0的解集为( D )A.(-∞,-2)∪(1,+∞)B.(-∞,2)∪(1,2)C.(-∞,-1)∪(-1,0)∪(2,+∞)D.(-∞,-1)∪(-1,1)∪(3,+∞)解析:由题图可知,f′(x)>0,则x∈(-∞,-1)∪(1,+∞),f′(x)<0,则x∈(-1,1),不等式(x2

6、-2x-3)f′(x)>0等价于或解得x∈(-∞,-1)∪(-1,1)∪(3,+∞).6.若函数f(x)=2x2-lnx在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是( C )A.[1,+∞)B.[1,2)C.D.解析:f′(x)=4x-=,∵x>0,由f′(x)=0得x=.∴令f′(x)>0,得x>;令f′(x)<0,得0

7、(x)<0,即3(x-11)(x+1)<0,解得-1

8、执政基础,束城镇深入贯彻全市扫黑除恶会

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。