5、AOB=50°,试确定∠ADC的大小.图7解:∵OA⊥BC,∴=,∴∠ADC=∠AOB=25°.【思想方法】垂径定理与圆周角定理的综合运用一般是通过圆周角定理进行角度、弧度转换,利用垂径定理求解. 如图8,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=3cm,则弦AB的长为( A )图8A.9cm B.3cmC.cmD.cm解:∵∠CBA=30°,∴∠AOC=2∠CBA=60°,∵AB⊥OC,∴∠ADO=90°,∴∠OAD=30°,∴OD=OA=×3=(cm),由勾股定理得:AD==4.5cm,∵AB⊥OC,OC过O,∴AB=2AD=9(cm
6、),故选A. 如图9,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,则EC的长为( D )图9 变形2答图A.2B.8C.2D.2【解析】∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=BC=4,设⊙O的半径为r,则OC=r-2,在Rt△AOC中,∵AC=4,OC=r-2,∴OA2=AC2+OC2,即r2=42+(r-2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,
7、∴CE===2.故选D. 如图10,半圆O的直径AB=10,弦AC=6cm,AD平分∠BAC,则AD的长为( A )图10 变形3答图A.4cmB.3cmC.5cmD.4cm【解析】连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△OED,∴OE=AF=AC=3cm,在Rt△DOE中,,DE==4cm,在Rt△ADE中,AD==4cm,故选A. 如图11,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O