高中数学(2.5.2向量在物理中的应用举例)教案新人教a版必修4_设计

高中数学(2.5.2向量在物理中的应用举例)教案新人教a版必修4_设计

ID:31233709

大小:147.00 KB

页数:5页

时间:2019-01-07

高中数学(2.5.2向量在物理中的应用举例)教案新人教a版必修4_设计_第1页
高中数学(2.5.2向量在物理中的应用举例)教案新人教a版必修4_设计_第2页
高中数学(2.5.2向量在物理中的应用举例)教案新人教a版必修4_设计_第3页
高中数学(2.5.2向量在物理中的应用举例)教案新人教a版必修4_设计_第4页
高中数学(2.5.2向量在物理中的应用举例)教案新人教a版必修4_设计_第5页
资源描述:

《高中数学(2.5.2向量在物理中的应用举例)教案新人教a版必修4_设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.5.2向量在物理中的应用举例整体设计教学分析向量与物理学天然相联.向量概念的原型就是物理中的力、速度、位以及几何中的有向线段等概念,向量是既有大小、又有方向的量,它与物理学中的力学、运动学等有着天然的联系,将向量这一工具应用到物理中,可以使物理题解答更简捷、更清晰.并且向量知识不仅是解决物理许多问题的有利工具,而且用数学的思想方法去审视相关物理现象,研究相关物理问题,可使我们对物理问题的认识更深刻.物理中有许多量,比如力、速度、加速度、位移等都是向量,这些物理现象都可以用向量来研究.用向量研究物理问题的相关知识.(1)力

2、、速度、加速度、位移等既然都是向量,那么它们的合成与分解就是向量的加、减法,运动的叠加亦用到向量的合成;(2)动量是数乘向量;(3)功即是力与所产生位移的数量积.用向量知识研究物理问题的基本思路和方法.①通过抽象、概括,把物理现象转化为与之相关的向量问题;②认真分析物理现象,深刻把握物理量之间的相互关系;③利用向量知识解决这个向量问题,并获得这个向量的解;④利用这个结果,对原物理现象作出合理解释,即用向量知识圆满解决物理问题.教学中要善于引导学生通过对现实原型的观察、分析和比较,得出抽象的数学模型.例如,物理中力的合成与分解

3、是向量的加法运算与向量分解的原型.同时,注重向量模型的运用,引导解决现实中的一些物理和几何问题.这样可以充分发挥现实原型对抽象的数学概念的支撑作用.三维目标1.通过力的合成与分解的物理模型,速度的合成与分解的物理模型,掌握利用向量方法研究物理中相关问题的步骤,明了向量在物理中应用的基本题型,进一步加深对所学向量的概念和向量运算的认识.2.通过对具体问题的探究解决,进一步培养学生的数学应用意识,提高应用数学的能力.体会数学在现实生活中的重要作用.养成善于发现生活中的数学,善于发现物理及其他科目中的数学及思考领悟各学科之间的内在

4、联系的良好习惯.重点难点教学重点:1.运用向量的有关知识对物理中力的作用、速度的分解进行相关分析和计算.2.归纳利用向量方法解决物理问题的基本方法.教学难点:将物理中有关矢量的问题转化为数学中向量的问题.课时安排1课时教学过程导入新课思路1.(章头图引入)章头图中,道路、路标体现了向量与位移、速度、力等物理量之间的密切联系.章引言说明了向量的研究对象及研究方法.那么向量究竟是怎样应用于物理的呢?它就像章头图中的高速公路一样,是一条解决物理问题的高速公路.在学生渴望了解的企盼中,教师展示物理模型,由此展开新课.思路2.(问题引

5、入)你能举出物理中的哪些向量?比如力、位移、速度、加速度等,既有大小又有方向,都是向量,学生很容易就举出来.进一步,你能举出应用向量来分析和解决物理问题的例子吗?你是怎样解决的?教师由此引导:向量是有广泛应用的数学工具,对向量在物理中的研究,有助于进一步加深对这方面问题的认识.我们可以通过对下面若干问题的研究,体会向量在物理中的重要作用.由此自然地引入新课.应用示例例1在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种现象吗?活动:这

6、个日常生活问题可以抽象为如图1所示的数学模型,引导学生由向量的平行四边形法则,力的平衡及解直角三角形等知识来思考探究这个数学问题.这样物理中力的现象就转化为数学中的向量问题.只要分析清楚F、G、θ三者之间的关系(其中F为F1、F2的合力),就得到了问题的数学解释.图1在教学中要尽可能地采用多媒体,在信息技术的帮助下让学生来动态地观察

7、F

8、、

9、G

10、、θ之间在变化过程中所产生的相互影响.由学生独立完成本例后,与学生共同探究归纳出向量在物理中的应用的解题步骤,也可以由学生自己完成,还可以用信息技术来验证.用向量解决物理问题的一般

11、步骤是:①问题的转化,即把物理问题转化为数学问题;②模型的建立,即建立以向量为主体的数学模型;③参数的获得,即求出数学模型的有关解——理论参数值;④问题的答案,即回到问题的初始状态,解释相关的物理现象.解:不妨设

12、F1

13、=

14、F2

15、,由向量的平行四边形法则、力的平衡以及直角三角形的知识,可以知道通过上面的式子,我们发现:当θ由0°到180°逐渐变大时,由0°到90°逐渐变大,cos的值由大逐渐变小,因此

16、F1

17、由小逐渐变大,即F1,F2之间的夹角越大越费力,夹角越小越省力.点评:本例是日常生活中经常遇到的问题,学生也会有两人共

18、提一个旅行包以及在单杠上做引体向上运动的经验.本例的关键是作出简单的受力分析图,启发学生将物理现象转化成模型,从数学角度进行解释,这就是本例活动中所完成的事情.教学中要充分利用好这个模型,为解决其他物理问题打下基础.得到模型后就可以发现,这是一个很简单的向量问题,这也是向量工具优越性的具体

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。