基于matlab的倒立摆仿真设计

基于matlab的倒立摆仿真设计

ID:31217158

大小:272.38 KB

页数:9页

时间:2019-01-07

基于matlab的倒立摆仿真设计_第1页
基于matlab的倒立摆仿真设计_第2页
基于matlab的倒立摆仿真设计_第3页
基于matlab的倒立摆仿真设计_第4页
基于matlab的倒立摆仿真设计_第5页
资源描述:

《基于matlab的倒立摆仿真设计》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、基于matIab的倒立摆的仿真与设计姓名:贾永伟专业:测控技术与仪器学号:1123105950年级:2011级摘要:倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。木论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID控制方法,设计出相应的PID控制器,并将控制过程在MATLAB±加以仿真。关键词:一级倒立摆,PID,MATLAB仿真一、倒立摆模型的研究意义倒立摆系统的研究能冇效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的

2、控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。同时,英控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程屮的平衡控制、火箭发射中的垂直度控制都有重要意义倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实卫星飞行中的姿态控制等。故其研究意义广泛。二、倒立摆模型的数学建模质量为m的小球固结于长度为L的细杆(可忽略杆的质量)上,细杆又和质量为M的小车较接相连。曲经验知:通过控制施加在小车上的力F(包括大小和方向)能够使细杆处于〃=0的稳定倒立状态。在忽略其他零

3、件的质量以及各种摩擦和阻尼的条件下,推导小车倒立摆系统的数学模型分析过程如下:如图所示,设细杆摆沿顺吋针方向转动为正方向,水平向右方向为水平方向上的正方向。当细杆摆顺时针往右运动时水平方向施加的力应该为水平向右。现对小车和细杆摆分别进行隔离受力分析:小车受力图小球受力分析(1)对小车有:F-F,sin0=Mxz'(2)对小球有:水平方向上运动为x+lsin0故水平方向受力为F'sinG=m(x+lsin0)‘‘=m(x‘+lcos00,)f=mxzr+mlcos00,z-mlsin0(0z)2(b)由(a)、(b)两式得F=(M+m)xrrH-mlco

4、sOO^r-mlsinO(0z)2<1>小球垂直方向上位移为lcosB故受力为Fzcos0-mg=m(lcos0)二-ml。"sin0-mlcos0(0A)2(c)<2>即Fzcos0=mg-ml0zrsin0-mlcos0(0f)2由(b)、(c)两式得cos0xzz=gsin0-10z故可得以下运动方程组:F=(M+m)x“+mlcosO0^-mlsine(OO^2cos0xzr=gsin0-10zsing0,cos0ul以上方程组为非线性方程组,故需做如下线性化处理:3!2!当8很小时,由cos0^sin0的幕级数展开式可知,忽略高次项后,可得c

5、os0«l,sin0«0,r故线性化后运动方程组简化为F=(M+m)xr9+ml0,9.X'f=g9-10zzF面进行系统状态空间方程的求解:以摆角e>角速度V、小车位移x、加速度灯为系统状态变量,Y为输出,F为输入x'o'x2&x3Xx4■■X*■■即x二~exlXx3Y二由线性化后运动方程组得xif=0Z=x2X2,诃二也如xi-丄尺MlMlX3,二x'二x4X4,010o-0xV{m+加k000xl1vx2*Xz==Mlx2+Ml兀3’0001x30x4Jmg0001_MIM]故空间状态方程如下:Fxl「E1「1nnrfly?〉〉C二LI000

6、;0010」>>D二[0;0]>>[num,den]=ss2tf(A,B,C,D,1);>>[num,den]=ss2tf(A,B,C,D,1)num=0-0.0000-1.0000000-0.00000.5000-0.0000-9.8000den=1.00000-20.580000①(s)_-1曲上可以得出角度对力F的传递函数:F(s)~s2--20.58X(s)0.552-9.8位移X对外力F的传递函数:F(s)~-20.58?三、用MATLAB的Simulink仿真系统进行建模1.没校正之前的9-F控制系统由于未加进控制坏节,故系统输出发散2、加

7、进控制环节,实现时域的稳定控制给系统加入PID控制,设置系统稳定值为(),给系统一个初始干扰冲击信号采用试凑法不断调整PID参数,使系统达到所需的控制效果当系统Kp=-100,Ti=Td=O时输出如下:2Scope聂賞IqQ炉

8、盹fg1不断地调整参数,最后得到稳定的响应Kp=J000,Ti=l,Td=-40W再微调可见调整好参数后,系统基本达到稳定,净差基本为0,超调较小,响应吋间较小后,得到最终的响应曲线响应时间较小,Tp=0.2s3、时域达到稳定后,进行离散化分析离散模型系统控制框图如下Constant4—11-z1—iGain1DiscreteF

9、ilterK-->i-r1i―►pK-GainDiscreteFIRFilterZero-Or

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。