欢迎来到天天文库
浏览记录
ID:31179638
大小:14.60 MB
页数:85页
时间:2019-01-07
《高考数学大一轮复习第八章立体几何8_5直线平面垂直的判定与性质课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§8.5直线、平面垂直的判定与性质基础知识 自主学习课时训练题型分类 深度剖析内容索引基础知识 自主学习_______________________文字语言图形语言符号语言判定定理一条直线与一个平面内的两条直线都垂直,则该直线与此平面垂直a,b⊂αa∩b=Ol⊥al⊥b1.直线与平面垂直(1)定义如果直线l与平面α内的直线都垂直,则直线l与平面α垂直.(2)判定定理与性质定理知识梳理任意一条⇒l⊥α相交性质定理垂直于同一个平面的两条直线____a⊥αb⊥α⇒a∥b平行__________2.直线和平面所成的角(1
2、)定义平面的一条斜线和所成的锐角,叫做这条直线和这个平面所成的角.若一条直线垂直于平面,它们所成的角是,若一条直线和平面平行,或在平面内,它们所成的角是的角.它在平面上的射影直角0°3.平面与平面垂直(1)二面角的有关概念①二面角:从一条直线出发的所组成的图形叫做二面角;②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作的两条射线,这两条射线所构成的角叫做二面角的平面角.(2)平面和平面垂直的定义两个平面相交,如果它们所成的二面角是,就说这两个平面互相垂直.两个半平面垂直于棱直二面角文字语
3、言图形语言符号语言判定定理一个平面过另一个平面的_____,则这两个平面垂直性质定理两个平面垂直,则一个平面内垂直于的直线与另一个平面垂直(3)平面与平面垂直的判定定理与性质定理垂线交线重要结论:(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.知识拓展判断下列结论是否正确(请在括号中打“√”或
4、“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.()(2)垂直于同一个平面的两平面平行.()(3)直线a⊥α,直线b⊥α,则a∥b.()(4)若α⊥β,a⊥β⇒a∥α.()(5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.()思考辨析××√×√考点自测1.(教材改编)下列命题中不正确的是A.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD.如果平面α⊥平面γ,平面β
5、⊥平面γ,α∩β=l,那么l⊥γ答案解析根据面面垂直的性质,知A不正确,直线l可能平行平面β,也可能在平面β内.2.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件若α⊥β,因为α∩β=m,b⊂β,b⊥m,所以根据两个平面垂直的性质定理可得b⊥α,又a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.答案解析3.(2016
6、·宝鸡质检)对于四面体ABCD,给出下列四个命题:①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;③若AB⊥AC,BD⊥CD,则BC⊥AD;④若AB⊥CD,AC⊥BD,则BC⊥AD.其中为真命题的是A.①②B.②③C.②④D.①④答案解析①如图,取BC的中点M,连接AM,DM,由AB=AC⇒AM⊥BC,同理DM⊥BC⇒BC⊥平面AMD,而AD⊂平面AMD,故BC⊥AD.④设A在平面BCD内的射影为O,连接BO,CO,DO,由AB⊥CD⇒BO⊥CD,由AC⊥BD⇒CO⊥BD⇒O为△
7、BCD的垂心⇒DO⊥BC⇒AD⊥BC.4.(教材改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O.(1)若PA=PB=PC,则点O是△ABC的_____心.外答案解析如图1,连接OA,OB,OC,OP,在Rt△POA、Rt△POB和Rt△POC中,PA=PC=PB,所以OA=OB=OC,即O为△ABC的外心.(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的___心.垂答案解析如图2,延长AO,BO,CO分别交BC,AC,AB于H,D,G.∵PC⊥PA,PB⊥PC,PA∩PB=P,∴PC⊥平面
8、PAB,AB⊂平面PAB,∴PC⊥AB,又AB⊥PO,PO∩PC=P,∴AB⊥平面PGC,又CG⊂平面PGC,∴AB⊥CG,即CG为△ABC边AB的高.同理可证BD,AH为△ABC底边上的高,即O为△ABC的垂心.题型分类 深度剖析题型一 直线与平面垂直的判定与性质例1(2016·全国甲卷改编)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6
此文档下载收益归作者所有