医学图像处理技术及其发展

医学图像处理技术及其发展

ID:30959427

大小:67.50 KB

页数:6页

时间:2019-01-04

医学图像处理技术及其发展_第1页
医学图像处理技术及其发展_第2页
医学图像处理技术及其发展_第3页
医学图像处理技术及其发展_第4页
医学图像处理技术及其发展_第5页
资源描述:

《医学图像处理技术及其发展》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、医学图像处理技术及其发展摘耍:文章介绍了医学图像处理的基本技术,对图像分割、图像配准、图像融合、伪彩色处理和纹理分析技术进行了综述。介绍了三维医学图像的可视化和基于PACS的医学图像压缩在医学图像处理方面的应用。最后指出了医学图像处理的发展方向。关键词:医学图像处理;图像配准;图像融合;图像分割;纹理分析;伪彩色处理;可视化近年来,医学影像已成为医学技术中发展最快的领域之一。随着科技的进步,多学科交叉和融合已成为现代科学发展的突出特色和重要途径。自从显微镜问世以来,对医学图像的分析己成为医学研究中的重要方法,特别是X-CT,MRI、PET,SPECT等新型成像技术和设备的出现以及电脑技术

2、的发展,使得医学图像处理技术对医学科研及临床实践的作用和影响日益增大,其结果使临床医生对人体内部病变部位的观察更直接、更清晰,确诊率也更高。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。因此,医学图像处理技术一直受到国内外有关专家的高度重视,本文对医学图像处理技术进行了综述。1.图像配准和图像融合在临床诊断上,医生常常需要各种医学图像的支持,如CT、MRI.、PET、SPECT以及超声图像等,但无论哪一类的医学图像往往都难以提供全而的信息,这就需要将患者的各种图像信息综合研究,如

3、何使多次成像或多种成像设备的信息得到综合利用,弥补信息不完整、部分信息不准确或不确定引起的缺陷,使临床的诊断治疗、放疗定位、计划设计、外科手术和疗效评估更准确,已成为医学图像处理急需解决的重要课题。而这就首先必须解决图像的配准(或叫匹配)和融合问题。医学图像配准是确定两幅或多幅医学图像像素的空间对应关系;而融合是指将不同形式的医学图像中的信息综合到•起,形成新的图像的过程图像配准是图像融合必需的预处理技术,反过来,图像融合是图像配准的一个冃的。医学图像配准是通过寻找某种空间变换,使两幅图像的对应点达到空间位置和解剖结构上的完全一致。要求配准的结构能使两幅图像上所有的解剖点,或至少是所有具

4、有诊断意义以及手术区域的点都达到匹配。目前医学图像配准方法有基丁外部特征的图像配准(有框架)和基于图像内部特征的图像配准(无框架)两种方法。后者由于其无创性和可回溯性,已成为配准算法的研究屮心。基于互信息的弹性形变模型也逐渐成为研究热点。互信息是统计两个随机变量相关性的测度,以互信息作为两幅图像相似性测度进行配准基于如下原理:当两幅基于共同的解剖结构的图像达到最佳配准时,它们对应的图像特征的互信息应为最大。近年来,医学图像配准技术有了新的进展,在配准方法上应用了信息学的理论和方法,例如应用最人化的互信息量作为配准准则进行图像的配准,在配准对象方而从二维图像发展到三维多模医学图像的配准。在

5、医学图像配准技术方而引入信号处理技术,例如傅氏变换和小波变换。另外,非线性配准也是近年来研究的热点,它对于非刚性对象的图像配准更加适用,配准结果更加准确。向快速和准确方而改进算法,使用故优化策略改进图像配准以及对非刚性图像配准的研究是今后医学图像配准技术的发展方向。图像融合的主要目的是通过对多幅图像间的冗余数据的处理来提高图像的可读性,对多幅图像间的互补信息的处理來提高图像的清晰度。不同的医学影像设备获取的影像反映了不同的信息:功能图像(SPECT、PET等)分辨率较差,但它提供的脏器功能代谢和血液流动信息是解剖图像所不能替代的;解剖图像(CT、MRI、B超等)以较高的分辨率提供了脏器的

6、解剖形态信息,其中CT有利于更致密的组织的探测,而MRI能够提供软组织的更多信息。多模态医学图像的融合把有价值的生理功能信息与精确的解剖结构结合在一起,可以为临床提供更加全而和准确的资料。目前,在图像融合技术研究屮,不断有新的方法出现,其中小波变换在图像融合中的应用,基于有限元分析的非线性配准以及人工智能技术在图像融合中的应用将是今后图像融合研究的热点与方向。随着三维重建显不技术的发展,三维图像融合技术的研究也越来越受到重视,三维图像的融合和信息表达,也将是图像融合研究的一个重点。1.图像分割技术图像分割就是把图像中具有特殊涵义的不同区域分开来,这些区域使互不相交的每一个区域都满足特定区

7、域的一致性。它是图像处理与图像分析中的一个经典问题。图像分割技术发展至今,已在灰度阈值分割法、边缘检测分割法、区域跟踪分割法的基础上结合特定的理论工具有了进一步的发展。比如基于三维可视化系统结合FastMarching算法和Watershed变换的医学图像分割方法,能得到快速、准确的分割结果。图像分割同时又是进行三维重建的基础,分割的效果直接影响到三维重建后模型的精确性,分割可以帮助医生将感兴趣的物体(病变组织等)提取出來,帮助医丰

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。