高考数学二轮复习上篇专题整合突破专题一函数与导数不等式第5讲导数与实际应用及不等式问题课件理

高考数学二轮复习上篇专题整合突破专题一函数与导数不等式第5讲导数与实际应用及不等式问题课件理

ID:30932763

大小:14.38 MB

页数:41页

时间:2019-01-05

高考数学二轮复习上篇专题整合突破专题一函数与导数不等式第5讲导数与实际应用及不等式问题课件理_第1页
高考数学二轮复习上篇专题整合突破专题一函数与导数不等式第5讲导数与实际应用及不等式问题课件理_第2页
高考数学二轮复习上篇专题整合突破专题一函数与导数不等式第5讲导数与实际应用及不等式问题课件理_第3页
高考数学二轮复习上篇专题整合突破专题一函数与导数不等式第5讲导数与实际应用及不等式问题课件理_第4页
高考数学二轮复习上篇专题整合突破专题一函数与导数不等式第5讲导数与实际应用及不等式问题课件理_第5页
资源描述:

《高考数学二轮复习上篇专题整合突破专题一函数与导数不等式第5讲导数与实际应用及不等式问题课件理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第5讲 导数与实际应用及不等式问题高考定位高考对本内容的考查主要有:(1)导数在实际问题中的应用为函数应用题注入了新鲜的血液,使应用题涉及到的函数模型更加宽广,要求是B级;(2)导数还经常作为高考的压轴题,能力要求非常高.作为导数综合题,主要是涉及利用导数求最值解决恒成立问题、利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.真题感悟(1)证明因为对任意x∈R,都有f(-x)=e-x+e-(-x)=e-x+ex=f(x),所以f(x)是R上的偶函数.考点整合1.解决函数的实际应用题,首先考虑题目考查的函

2、数模型,并要注意定义域,其解题步骤是:(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.2.利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数后转化为函数最值问题:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f(x)≥a恒成立,只需f(x)mi

3、n≥a即可;f(x)≤a恒成立,只需f(x)max≤a即可.(2)转化为含参函数的最值问题:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),伴有对参数的分类讨论,然后构建不等式求解.3.常见构造辅助函数的四种方法(1)直接构造法:证明不等式f(x)>g(x)(f(x)<g(x))的问题转化为证明f(x)-g(x)>0(f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x).(2)构造“形似”函数:稍作变形后构造.对原不等式同解变形,如移项、通分、取对数,把不等式转化为左

4、右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数.(3)适当放缩后再构造:若所构造函数最值不易求解,可将所证明不等式进行放缩,再重新构造函数.(4)构造双函数:若直接构造函数求导,难以判断符号,导数的零点也不易求得,因此单调性和极值点都不易获得,从而构造f(x)和g(x),利用其最值求解.4.不等式的恒成立与能成立问题(1)f(x)>g(x)对一切x∈[a,b]恒成立⇔[a,b]是f(x)>g(x)的解集的子集⇔[f(x)-g(x)]min>0(x∈[a,b]).(2)f(x)>g(x)对x∈[a,b]

5、能成立⇔[a,b]与f(x)>g(x)的解集的交集不是空集⇔[f(x)-g(x)]max>0(x∈[a,b]).(3)对∀x1,x2∈[a,b]使得f(x1)≤g(x2)⇔f(x)max≤g(x)min.(4)对∀x1∈[a,b],∃x2∈[a,b]使得f(x1)≥g(x2)⇔f(x)min≥g(x)min.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.探究提高在利用导数求实际问题中的最

6、大值和最小值时,不仅要注意函数模型中的定义域,还要注意实际问题的意义,不符合的解要舍去.探究提高(1)证明f(x)≥g(x)或f(x)≤g(x),可通过构造函数h(x)=f(x)-g(x),将上述不等式转化为求证h(x)≥0或h(x)≤0,从而利用求h(x)的最小值或最大值来证明不等式.或者,利用f(x)min≥g(x)max或f(x)max≤g(x)min来证明不等式.(2)在证明不等式时,如果不等式较为复杂,则可以通过不等式的性质把原不等式变换为简单的不等式,再进行证明.[微题型2]利用导数解决不等式恒成立问

7、题【例2-2】(1)已知函数f(x)=ax-1-lnx,a∈R.①讨论函数f(x)的单调区间;②若函数f(x)在x=1处取得极值,对∀x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围.探究提高(1)利用最值法解决恒成立问题的基本思路是:先找到准确范围,再说明“此范围之外”不适合题意(着眼于“恒”字,寻找反例即可).(2)对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数.但要注意分离参数法不是万能的,如果分离参数后,得出的函数

8、解析式较为复杂,性质很难研究,就不要使用分离参数法.探究提高 存在性问题和恒成立问题的区别与联系存在性问题和恒成立问题容易混淆,它们既有区别又有联系:若g(x)≤m恒成立,则g(x)max≤m;若g(x)≥m恒成立,则g(x)min≥m;若g(x)≤m有解,则g(x)min≤m;若g(x)≥m有解,则g(x)max≥m.1.不等式恒成立、能成立问题常用解法有:(1)分离参

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。