奥数:四级奥数.杂题.抽屉原理(a级).学生版

奥数:四级奥数.杂题.抽屉原理(a级).学生版

ID:30902148

大小:214.55 KB

页数:10页

时间:2019-01-04

奥数:四级奥数.杂题.抽屉原理(a级).学生版_第1页
奥数:四级奥数.杂题.抽屉原理(a级).学生版_第2页
奥数:四级奥数.杂题.抽屉原理(a级).学生版_第3页
奥数:四级奥数.杂题.抽屉原理(a级).学生版_第4页
奥数:四级奥数.杂题.抽屉原理(a级).学生版_第5页
资源描述:

《奥数:四级奥数.杂题.抽屉原理(a级).学生版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、抽屉原理知识框架一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。(2)定义一般情况下,把n+1或多

2、于n+1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1,结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=,结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0,结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.例题精讲一、直接用公式进行解题(1)求结论【例1】只鸽子要飞进个笼子,每个笼子里都必须有只,一定有一个笼

3、子里有只鸽子.对吗?【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【例2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有      人的头发的根数相同。【例1】四个连续的自然数分别被除后,必有两个余数相同,请说明理由.【巩固】在任意的四个自然数中,是否其中必有两个数,它们的差能被整除?(2)求抽屉【例2】把十只小兔放进至多几个笼子里,才能保证至少有一个笼里有两只或两只以上的小兔?【巩固】袋中有外形安全

4、一样的红、黄、蓝三种颜色的小球各10个,每个小朋友只能从中摸出1个小球,至少有______个小朋友摸球,才能保证一定有两个人摸的球颜色一样.【例3】把125本书分给五⑵班的学生,如果其中至少有一个人分到至少4本书,那么,这个班最多有多少人?【巩固】某次选拔考试,共有1123名同学参加,小明说:“至少有10名同学来自同一个学校.”如果他的说法是正确的,那么最多有多少个学校参加了这次入学考试?(3)求苹果【例1】班上有名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?【巩固】班上有名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至

5、少有一个小朋友能得到不少于两本书?【例2】一次数学竞赛出了10道选择题,评分标准为:基础分10分,每道题答对得3分,答错扣1分,不答不得分。问:要保证至少有4人得分相同,至少需要多少人参加竞赛?【巩固】一次测验共有10道问答题,每题的评分标准是:回答完全正确,得5分;回答不完全正确,得3分,回答完全错误或不回答,得0分.至少____人参加这次测验,才能保证至少有3人得得分一、构造抽屉【例1】学校里买来数学、英语两类课外读物若干本,规定每位同学可以借阅其中两本,现有位小朋友前来借阅,每人都借了本.请问,你能保证,他们之中至少有两人借阅的图书属于同一种吗?【巩固】11名学

6、生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同【例2】红、蓝两种颜色将一个方格图中的小方格随意涂色(见下图),每个小方格涂一种颜色.是否存在两列,它们的小方格中涂的颜色完全相同?【巩固】将每一个小方格涂上红色、黄色或蓝色.(每一列的三小格涂的颜色不相同),不论如何涂色,其中至少有两列,它们的涂色方式相同,你同意吗?一、最不利原则【例1】有一个布袋中有40个相同的小球,其中编上号码1、2、3、4的各有10个,问:一次至少要取出多少个小球,才能保证其中至少有3个小球的号码相同?

7、【巩固】有一个布袋中有5种不同颜色的球,每种都有20个,问:一次至少要取出多少个小球,才能保证其中至少有3个小球的颜色相同?课堂检测【随练1】在任意的五个自然数中,是否其中必有三个数的和是的倍数?【随练2】100个苹果最多分给多少个学生,能保证至少有一个学生所拥有的苹果数不少于12个.【随练3】红、黄、白三种颜色的小球各个,混合放在一个布袋中,一次至少摸出个,才能保证有个小球是同色的?家庭作业【作业1】年级一班学雷锋小组有人.教数学的张老师说:“你们这个小组至少有个人在同一月过生日.”你知道张老师为什么这样说吗?【作业1】试说明400人中至少有两个人

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。