中考数学总复习专题二填空题解法突破课件

中考数学总复习专题二填空题解法突破课件

ID:30901197

大小:12.84 MB

页数:16页

时间:2019-01-04

中考数学总复习专题二填空题解法突破课件_第1页
中考数学总复习专题二填空题解法突破课件_第2页
中考数学总复习专题二填空题解法突破课件_第3页
中考数学总复习专题二填空题解法突破课件_第4页
中考数学总复习专题二填空题解法突破课件_第5页
资源描述:

《中考数学总复习专题二填空题解法突破课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2017中考总复习专题二填空题解法突破填空题是深圳中考必考题型之一,深圳数学中考填空题的数目是4题,这说明填空题有它不可替代的重要性.填空题和选择题一样同属于基础题,重在考查学生的基础知识和基本技能.但是为了更好地开发学生的智力,提高学生的能力,往往在选择题的最后一题或填空题的最后一题,设置难度稍大的题目.这类题目类型可能是图形变化结合函数题、规律探究题、新定义题、剪切折叠问题等,还需要分类讨论,所以难度偏大.填空题具有概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力.解读2017年深圳

2、中考考纲在解填空题时要做到:快、稳、全、活、细.快——运算要快,力戒小题大做;稳——变形要稳,不可操之过急;全——答案要全,力避残缺不齐;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意.必须仔细审题、深入分析、正确推理、谨防疏漏、确保准确.解填空题的策略:虽然填空题有别于解答题,只需要答案不需要过程,但比较解答题来说一旦做错就不能得分,因此要想方设法求得正确答案,特别要注意检验.不能只是求得答案不化简,或求得中间答案就匆匆忙忙写上去.和选择题一样,填空题也属于客观题,其解题的基本原则是“小题不能大做”,解题的基本策略是“巧做”

3、,解题的基本方法一般有直接法、特殊化法、数形结合法、等价转换法和构造法等.直接从题设条件出发,利用定义、性质、定理、公式等,经过变形、推理、计算、判断得到结论的,称为直接法.它是解填空题的最基本、最常用的方法.使用直接法解填空题,要善于通过现象看本质,自觉地、有意识地采取灵活和简捷的解法.【例题1】(2015·德阳市)分解因式:a3-a=.思路分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.故答案为a(a+1)(a-1).考点解析策略一直接法a(a+1)(a-1)【例题2】(2015·攀枝花市)分式方程的根为.思路分析:分式

4、方程去分母转化为整式方程,求出整式方程的解得到的x值,经检验即可得到分式方程的解.故答案为2.2当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数、特殊角、特殊数列、图形特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出探求的结论.这样可大大地简化推理、论证的过程.考点解析策略二特殊化法【例题3】已知,则的值是.思路分析:本题中a和b的值虽然不确定,但我们可取特殊值13和5,直接代入求解.∵,∴可取特殊值a=13,b=5

5、.∴故答案为.【例题4】已知,用“<”把连接起来后是.思路分析:只要答案,不要过程,可用特殊元素法,只要被选的特殊元素满足已知条件,且方便计算即可.取,∴.故答案为.对于一些含有几何背景的填空题,若能根据题目条件的特点,作出符合题意的图形,做到数中思形,以形助数,并通过对图形的直观分析、判断,往往可以简捷地得出正确的结果.考点解析策略三数形结合法【例题5】(2014·珠海市)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为直线.思路分析:二次函数的图象和解析式有很密切的联系,点(1,0),(3,0)的纵坐

6、标相同,这两点一定关于对称轴对称,那么利用两点的横坐标可求对称轴.故答案为x=2.x=2【例题6】已知非负数a,b,c满足条件a+b=7,c-a=5,设S=a+b+c的最大值为m,最小值为n,则m-n=.思路分析:本题是将这个陌生的问题转化成我们熟悉的一次函数问题来求最值.把a+b=7和c-a=5两式相加,即可得b+c=12,所以S=a+b+c=a+12,故确定S的最大值和最小值的关键就是确定a的取值范围.由a+b=7,得b=7-a,根据a≥0,b≥0,有7-a≥0,∴0≤a≤7.由c-a=5,得c=5+a,∵c≥0,∴5+a≥0,即a≥

7、-5.由于a≥0,所以一定有a≥-5,∴0≤a≤7.∴m=7+12=19,n=0+12=12,从而m-n=19-12=7.故答案为7.7根据题设条件与结论的特殊性,构造出一些新的数学形式,并借助它认识和解决问题的一种方法.【例题7】已知,且a≠0,则=.思路分析:在这个题目中,题设可变为(b-c)2-4(a-b)(c-a)=0,从形式上看酷似一元二次方程的判别式,这就促使我们构造一个一元二次方程.设一元二次方程x2+(b-c)x+(a-b)(c-a)=0,即[x-(a-b)][x-(c-a)]=0,则a-b,c-a是它的两根.∵Δ=(b-

8、c)2-4(a-b)(c-a)=0,∴方程有两个相等的根,即a-b=c-a.∴故答案为2.考点解析策略四构造法2完成真题演练:第题.完成课后作业:第题.完成过关测试:第题.完成课后作业:第题.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。