欢迎来到天天文库
浏览记录
ID:30900849
大小:12.85 MB
页数:14页
时间:2019-01-04
《中考数学总复习 第三章 函数及其图象 第14讲 反比例函数的性质及其图象课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第14讲反比例函数的性质及其图象1.结合具体情景体会反比例函数的意义,能根据已知条件确定反比例函数的表达式.2.会画反比例函数的图象,能根据图象探索并理解反比例函数的性质,进一步提高从函数图象中获取信息的能力.3.会用反比例函数解决某些实际问题,逐步形成用函数方法处理问题的意识,体验数形结合的思想方法.解读2017年深圳中考考纲考点详解考点一、反比例函数的概念及其性质1.反比例函数的概念:一般地,如果两个变量x,y能表示成y=kx(k是常数,k≠0)的形式,那么y就叫做x的反比例函数.反比例函数的解析式也可以写成y=kx-1
2、的形式.自变量x的取值范围是x≠0的一切实数,函数因变量y的取值范围也是一切非零实数.2.反比例函数的图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称.由于反比例函数中自变量x≠0,函数y≠0,所以,它的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.3.反比例函数的性质:考点详解反比例函数y=k/x(k≠0)k的符号k>0k<0图象性质①x的取值范围是x≠0,y的取值范围是y≠0;②当k>0时,函数图像的两个分支分别在第一、三象
3、限。在每个象限内,y随x的增大而减小。①x的取值范围是x≠0,y的取值范围是y≠0;②当k<0时,函数图像的两个分支分别在第二、四象限。在每个象限内,y随x的增大而增大。若反比例函数y=k/x(k≠0)的图象经过点P(﹣2,3),则该函数的图象不经过的点是( )A.(3,﹣2)B.(1,﹣6)C.(﹣1,6)D.(﹣1,﹣6)基础达标D解析:解:∵反比例函数y=k/x(k≠0)的图象经过点P(﹣2,3),∴k=﹣2×3=﹣6,∴只需把各点横纵坐标相乘,不是﹣6的,该函数的图象就不经过此点,四个选项中只有D不符合.考点详解考
4、点二、反比例函数表达式的确定确定解析式的方法仍是待定系数法。由于在反比例函数y=k/x中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。D对于反比例函数y=3/x,下列说法正确的是( )A.图象经过点(1,-3)B.图象在第二、四象限C.x>0时,y随x的增大而增大D.x<0时,y随x增大而减小解析:A.∵反比例函数y=3/x,∴xy=3,故图象经过点(1,3),故此选项错误;B.∵k>0,∴图象在第一、三象限,故此选项错误;C.∵k>0,∴x>0时,y随x增大而减小,
5、故此选项错误;D.∵k>0,∴x<0时,y随x增大而减小,故此选项正确.考点详解考点三、反比例函数中反比例系数的几何意义如下图,过反比例函数y=k/x(k≠0)图像上任一点P作x轴、y轴的垂线PM,PN,则所得的矩形PMON的面积S=PM·PN=
6、y
7、·
8、x
9、=
10、xy
11、。解析:解:∵点A(1,y1)和点B(2,y2)在反比例函数y=1/x的图象上,若点A(1,y1)和点B(2,y2)在反比例函数y=1/x图象上,则y1与y2的大小关系是:y1y2(填“>”、“<”或“=”).正比例函数y=6x的图象与反比例函数y=6/x的
12、图象的交点位于( )A.第一象限B.第二象限C.第三象限D.第一、三象限解析:D【例题1】关于x的反比例函数的图象如图,A,P为该图象上的点,且关于原点成中心对称.△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程的根的情况是.典例解读没有实数根考点:①根的判别式;②反比例函数的性质.分析:由反比例函数的图象位于第一、三象限得出a+4>0,A,P为该图象上的点,且关于原点成中心对称,得出2xy>12,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的
13、情况即可.解答:∵反比例函数的图象位于第一、三象限,∴a+4>0,即a>-4.∵点A,P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于12,∴2xy>12,即a+4>6.∴a>2.∴Δ=(-1)2-4(a-1)×=2-a.∵a>2,∴2-a<0.∴关于x的方程(a-1)x2-x+14=0没有实数根.故答案为:没有实数根.小结:此题综合考查了反比例函数的图象与性质、一元二次方程根的判别式.注意正确判定a的取值范围是解决问题的关键.典例解读【例题2】(2016·深圳市)如图,四边形ABCO是平行四边形,OA=2,
14、AB=6,点C在x轴的负半轴上,将▱ABCO绕点A逆时针旋转得到▱ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点D在反比例函数(x<0)的图象上,则k的值为.【考点】反比例函数图象上点的坐标特征;平行四边形的性质.典例解读【分析】根据旋转的性质以及平行四边形的性质得出∠BAO=∠
此文档下载收益归作者所有