奥数:六级奥数4第37讲对策问题

奥数:六级奥数4第37讲对策问题

ID:30899163

大小:46.50 KB

页数:7页

时间:2019-01-04

奥数:六级奥数4第37讲对策问题_第1页
奥数:六级奥数4第37讲对策问题_第2页
奥数:六级奥数4第37讲对策问题_第3页
奥数:六级奥数4第37讲对策问题_第4页
奥数:六级奥数4第37讲对策问题_第5页
资源描述:

《奥数:六级奥数4第37讲对策问题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第37讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。哪一方的策略更胜一筹,哪一方就会取得最终的胜利。解决这类问题一般采用逆推法和归纳法。二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。挨到

2、谁移走最后一根火柴就算谁输。如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。设先移的人为甲,后移的人为乙。甲要取胜只要取走第999根火柴。因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。依次类推,甲取的与乙取的之和为8根火柴)。由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。所以,先移火柴的人要保证获胜,第一次应移走7根火柴。练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

3、每人每次可以拿1至3根,不许不拿,乙让甲先拿。问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。先移者确保获胜的方法是什么?【例题2】有1987粒棋子。甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。现在两人通过抽签决定谁先取。你认为先取的能胜,还是后取的能胜?怎样取法

4、才能取胜?从结局开始,倒推上去。不妨设甲先取,乙后取,剩下1至4粒,甲可以一次拿完。如果剩下5粒棋子,则甲不能一次拿完,乙胜。因此甲想取胜,只要在某一时刻留下5粒棋子就行了。不妨设甲先取,则甲能取胜。甲第一次取2粒,以后无论乙拿几粒,甲只要使自己的粒数与乙拿的粒数之和正好等于5,这样,每一轮后,剩下的棋子粒数总是5的倍数,最后总能留下5粒棋子,因此,甲先取必胜。练习2:1、甲、乙两人轮流从1993粒棋子中取走1粒或2粒或3粒,谁取到最后一粒的是胜利者,你认为先取的能获胜,还是后取的能获胜,应采取什么策略?2、有1997根火柴,甲、乙两人轮流取火柴,每

5、人每次可取1至10根,谁能取到最后一根谁为胜利者,甲先取,乙后取。甲有获胜的可能吗?取胜的策略是什么?3、盒子里有47粒珠子,两人轮流取,每次最多取5粒,最少取1粒,谁最先把盒子的珠子取完,谁就胜利,小明和小红来玩这个取珠子的游戏,先名先、小红后,谁胜?取胜的策略是什么?【例题3】在黑板上写有999个数:2,3,4,……,1000。甲、乙两人轮流擦去黑板上的一个数(甲先擦,乙后擦),如果最后剩下的两个数互质,则甲胜,否则乙胜。谁必胜?必胜的策略是什么?甲先擦去1000,剩下的998个数,分为499个数对:(2,3),(4,5),(6,7),……(99

6、8,999)。可见每一对数中的两个数互质。如果乙擦去某一对中的一个,甲则接着擦去这对中的另一个,这样乙、甲轮流去擦,总是一对数、一对数地擦,最后剩下的一对数必互质。所以,甲必胜。练习3:1、甲、乙两人轮流从分别写有1,2,3,……,99的99张卡片中任意取走一张,先取卡的人能否保证在他取走的第97张卡片时,使剩下的两张卡片上的数一个是奇数,一个是偶数?2、两个人进行如下游戏,即两个人轮流从数列1,2,3,……,100,101勾去九个数。经过这样的11次删除后,还剩下两个数。如果这两个数的差是55,这时判第一个勾数的人获胜。问第一个勾数的人能否获胜?获

7、胜的策略是什么?3、在黑板上写n—1(n>3)个数:2,3,4,……,n。甲、乙两人轮流在黑板上擦去一个数。如果最后剩下的两个数互质,则乙胜,否则甲胜。N分别取什么值时:(1)甲必胜?(2)乙必胜?必胜的策略是什么?【例题4】甲、乙两人轮流在黑板上写下不超过10的自然数,规定禁止在黑板上写已写过的数的约数,最后不能写的人为失败者。如果甲第一个写,谁一定获胜?写出一种获胜的方法。这里关键是第一次写什么数,总共只有10个数,可通过归纳试验。甲不能写1,否则乙写6,乙可获胜;甲不能写3,5,7,否则乙写8,乙可获胜;甲不能写4,9,10,否则乙写6,乙可获

8、胜。因此,甲先写6或8,才有可能获胜。甲可以获胜。如甲写6,去掉6的约数1,2,3,6,乙只能写4,5,7,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。